• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 19
  • 15
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 112
  • 41
  • 37
  • 29
  • 28
  • 24
  • 22
  • 20
  • 17
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Statistical comparisons for nonlinear curves and surfaces

Zhao, Shi 31 May 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Estimation of nonlinear curves and surfaces has long been the focus of semiparametric and nonparametric regression. The advances in related model fitting methodology have greatly enhanced the analyst’s modeling flexibility and have led to scientific discoveries that would be otherwise missed by the traditional linear model analysis. What has been less forthcoming are the testing methods concerning nonlinear functions, particularly for comparisons of curves and surfaces. Few of the existing methods are carefully disseminated, and most of these methods are subject to important limitations. In the implementation, few off-the-shelf computational tools have been developed with syntax similar to the commonly used model fitting packages, and thus are less accessible to practical data analysts. In this dissertation, I reviewed and tested the existing methods for nonlinear function comparison, examined their operational characteristics. Some theoretical justifications were provided for the new testing procedures. Real data exampleswere included illustrating the use of the newly developed software. A new R package and a more user-friendly interface were created for enhanced accessibility. / 2020-08-22
22

On Applications of Semiparametric Methods

Li, Zhijian 01 October 2018 (has links)
No description available.
23

Zonal And Regional Load Forecasting In The New England Wholesale Electricity Market: A Semiparametric Regression Approach

Farland, Jonathan 01 January 2013 (has links) (PDF)
Power system planning, reliability analysis and economically efficient capacity scheduling all rely heavily on electricity demand forecasting models. In the context of a deregulated wholesale electricity market, using scheduling a region’s bulk electricity generation is inherently linked to future values of demand. Predictive models are used by municipalities and suppliers to bid into the day-ahead market and by utilities in order to arrange contractual interchanges among neighboring utilities. These numerical predictions are therefore pervasive in the energy industry. This research seeks to develop a regression-based forecasting model. Specifically, electricity demand is modeled as a function of calendar effects, lagged demand effects, weather effects, and a stochastic disturbance. Variables such as temperature, wind speed, cloud cover and humidity are known to be among the strongest predictors of electricity demand and as such are used as model inputs. It is well known, however, that the relationship between demand and weather can be highly nonlinear. Rather than assuming a linear functional form, the structural change in these relationships is explored. Those variables that indicate a nonlinear relationship with demand are accommodated with penalized splines in a semiparametric regression framework. The equivalence between penalized splines and the special case of a mixed model formulation allows for model estimation with currently available statistical packages such as R, STATA and SAS. Historical data are available for the entire New England region as well as for the smaller zones that collectively make up the regional grid. As such, a secondary research objective of this thesis is to explore whether or not an aggregation of zonal forecasts might perform better than those produced from a single regional model. Prior to this research, neither the applicability of a semiparametric regression-based approach towards load forecasting nor the potential improvement in forecasting performance resulting from zonal load forecasting has been investigated for the New England wholesale electricity market.
24

Asymptotic Results for Model Robust Regression

Starnes, Brett Alden 31 December 1999 (has links)
Since the mid 1980's many statisticians have studied methods for combining parametric and nonparametric esimates to improve the quality of fits in a regression problem. Notably in 1987, Einsporn and Birch proposed the Model Robust Regression estimate (MRR1) in which estimates of the parametric function, ƒ, and the nonparametric function, 𝑔, were combined in a straightforward fashion via the use of a mixing parameter, λ. This technique was studied extensively at small samples and was shown to be quite effective at modeling various unusual functions. In 1995, Mays and Birch developed the MRR2 estimate as an alternative to MRR1. This model involved first forming the parametric fit to the data, and then adding in an estimate of 𝑔 according to the lack of fit demonstrated by the error terms. Using small samples, they illustrated the superiority of MRR2 to MRR1 in most situations. In this dissertation we have developed asymptotic convergence rates for both MRR1 and MRR2 in OLS and GLS (maximum likelihood) settings. In many of these settings, it is demonstrated that the user of MRR1 or MRR2 achieves the best convergence rates available regardless of whether or not the model is properly specified. This is the "Golden Result of Model Robust Regression". It turns out that the selection of the mixing parameter is paramount in determining whether or not this result is attained. / Ph. D.
25

Semiparametric Techniques for Response Surface Methodology

Pickle, Stephanie M. 14 September 2006 (has links)
Many industrial statisticians employ the techniques of Response Surface Methodology (RSM) to study and optimize products and processes. A second-order Taylor series approximation is commonly utilized to model the data; however, parametric models are not always adequate. In these situations, any degree of model misspecification may result in serious bias of the estimated response. Nonparametric methods have been suggested as an alternative as they can capture structure in the data that a misspecified parametric model cannot. Yet nonparametric fits may be highly variable especially in small sample settings which are common in RSM. Therefore, semiparametric regression techniques are proposed for use in the RSM setting. These methods will be applied to an elementary RSM problem as well as the robust parameter design problem. / Ph. D.
26

Research on Robust Fuzzy Neural Networks

Wu, Hsu-Kun 19 November 2010 (has links)
In many practical applications, it is well known that data collected inevitably contain one or more anomalous outliers; that is, observations that are well separated from the majority or bulk of the data, or in some fashion deviate from the general pattern of the data. The occurrence of outliers may be due to misplaced decimal points, recording errors, transmission errors, or equipment failure. These outliers can lead to erroneous parameter estimation and consequently affect the correctness and accuracy of the model inference. In order to solve these problems, three robust fuzzy neural networks (FNNs) will be proposed in this dissertation. This provides alternative learning machines when faced with general nonlinear learning problems. Our emphasis will be put particularly on the robustness of these learning machines against outliers. Though we consider only FNNs in this study, the extension of our approach to other neural networks, such as artificial neural networks and radial basis function networks, is straightforward. In the first part of the dissertation, M-estimators, where M stands for maximum likelihood, frequently used in robust regression for linear parametric regression problems will be generalized to nonparametric Maximum Likelihood Fuzzy Neural Networks (MFNNs) for nonlinear regression problems. Simple weight updating rules based on gradient descent and iteratively reweighted least squares (IRLS) will be derived. In the second part of the dissertation, least trimmed squares estimators, abbreviated as LTS-estimators, frequently used in robust (or resistant) regression for linear parametric regression problems will be generalized to nonparametric least trimmed squares fuzzy neural networks, abbreviated as LTS-FNNs, for nonlinear regression problems. Again, simple weight updating rules based on gradient descent and iteratively reweighted least squares (IRLS) algorithms will be provided. In the last part of the dissertation, by combining the easy interpretability of the parametric models and the flexibility of the nonparametric models, semiparametric fuzzy neural networks (semiparametric FNNs) and semiparametric Wilcoxon fuzzy neural networks (semiparametric WFNNs) will be proposed. The corresponding learning rules are based on the backfitting procedure which is frequently used in semiparametric regression.
27

Semiparametric Bayesian Approach using Weighted Dirichlet Process Mixture For Finance Statistical Models

Sun, Peng 07 March 2016 (has links)
Dirichlet process mixture (DPM) has been widely used as exible prior in nonparametric Bayesian literature, and Weighted Dirichlet process mixture (WDPM) can be viewed as extension of DPM which relaxes model distribution assumptions. Meanwhile, WDPM requires to set weight functions and can cause extra computation burden. In this dissertation, we develop more efficient and exible WDPM approaches under three research topics. The first one is semiparametric cubic spline regression where we adopt a nonparametric prior for error terms in order to automatically handle heterogeneity of measurement errors or unknown mixture distribution, the second one is to provide an innovative way to construct weight function and illustrate some decent properties and computation efficiency of this weight under semiparametric stochastic volatility (SV) model, and the last one is to develop WDPM approach for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model (as an alternative approach for SV model) and propose a new model evaluation approach for GARCH which produces easier-to-interpret result compared to the canonical marginal likelihood approach. In the first topic, the response variable is modeled as the sum of three parts. One part is a linear function of covariates that enter the model parametrically. The second part is an additive nonparametric model. The covariates whose relationships to response variable are unclear will be included in the model nonparametrically using Lancaster and Šalkauskas bases. The third part is error terms whose means and variance are assumed to follow non-parametric priors. Therefore we denote our model as dual-semiparametric regression because we include nonparametric idea for both modeling mean part and error terms. Instead of assuming all of the error terms follow the same prior in DPM, our WDPM provides multiple candidate priors for each observation to select with certain probability. Such probability (or weight) is modeled by relevant predictive covariates using Gaussian kernel. We propose several different WDPMs using different weights which depend on distance in covariates. We provide the efficient Markov chain Monte Carlo (MCMC) algorithms and also compare our WDPMs to parametric model and DPM model in terms of Bayes factor using simulation and empirical study. In the second topic, we propose an innovative way to construct weight function for WDPM and apply it to SV model. SV model is adopted in time series data where the constant variance assumption is violated. One essential issue is to specify distribution of conditional return. We assume WDPM prior for conditional return and propose a new way to model the weights. Our approach has several advantages including computational efficiency compared to the weight constructed using Gaussian kernel. We list six properties of this proposed weight function and also provide the proof of them. Because of the additional Metropolis-Hastings steps introduced by WDPM prior, we find the conditions which can ensure the uniform geometric ergodicity of transition kernel in our MCMC. Due to the existence of zero values in asset price data, our SV model is semiparametric since we employ WDPM prior for non-zero values and parametric prior for zero values. On the third project, we develop WDPM approach for GARCH type model and compare different types of weight functions including the innovative method proposed in the second topic. GARCH model can be viewed as an alternative way of SV for analyzing daily stock prices data where constant variance assumption does not hold. While the response variable of our SV models is transformed log return (based on log-square transformation), GARCH directly models the log return itself. This means that, theoretically speaking, we are able to predict stock returns using GARCH models while this is not feasible if we use SV model. Because SV models ignore the sign of log returns and provides predictive densities for squared log return only. Motivated by this property, we propose a new model evaluation approach called back testing return (BTR) particularly for GARCH. This BTR approach produces model evaluation results which are easier to interpret than marginal likelihood and it is straightforward to draw conclusion about model profitability by applying this approach. Since BTR approach is only applicable to GARCH, we also illustrate how to properly cal- culate marginal likelihood to make comparison between GARCH and SV. Based on our MCMC algorithms and model evaluation approaches, we have conducted large number of model fittings to compare models in both simulation and empirical study. / Ph. D.
28

Effect Separation in Regression Models with Multiple Scales

Thaden, Hauke 17 May 2017 (has links)
No description available.
29

A avaliação do impacto de um treinamento utilizando Propensity Score Matching : uma abordagem não-paramétrica e semiparamétrica

Silveira, Luiz Felipe de Vasconcellos January 2015 (has links)
O objetivo dessa dissertação é avaliar o impacto de um programa de treinamento voltado para trabalhadores, utilizando o propensity score matching, mas com dois tipos de abordagem, uma não-paramétrica e a outra semi-paramétrica. Para estimação não paramétrica foi utilizado um método proposto por Li, Racine e Wooldridge (2009) e para estimação semi-paramétrica, o modelo utilizado foi o Generalized Additive Model proposto por Hastie e Tibshirani (1990). Os resultados obtidos indicam que os dois métodos utilizados apresentam estimativas tão boas ou melhores do que quando estimadas paramétricamente. / The goal of this thesis is to evaluate the impact of a job training program using propensity score matching methods with two types of approaches: a nonparametric e another semiparametric. For non-parametric estimation was used a method proposed by Li, Racine and Wooldridge (2009) and for the semiparametric model the Generalized Additive Model proposed by Hastie and Tibshirani (1990). The results indicate that both methods provide estimates as good or better than when parametrically estimated.
30

Partly parametric generalized additive model

Zhang, Tianyang 01 December 2010 (has links)
In many scientific studies, the response variable bears a generalized nonlinear regression relationship with a certain covariate of interest, which may, however, be confounded by other covariates with unknown functional form. We propose a new class of models, the partly parametric generalized additive model (PPGAM) for doing generalized nonlinear regression with the confounding covariate effects adjusted nonparametrically. To avoid the curse of dimensionality, the PPGAM specifies that, conditional on the covariates, the response distribution belongs to the exponential family with the mean linked to an additive predictor comprising a nonlinear parametric function that is of main interest, plus additive, smooth functions of other covariates. The PPGAM extends both the generalized additive model (GAM) and the generalized nonlinear regression model. We propose to estimate a PPGAM by the method of penalized likelihood. We derive some asymptotic properties of the penalized likelihood estimator, including consistency and asymptotic normality of the parametric estimator of the nonlinear regression component. We propose a model selection criterion for the PPGAM, which resembles the BIC. We illustrate the new methodologies by simulations and real applications. We have developed an R package PPGAM that implements the methodologies expounded herein.

Page generated in 0.102 seconds