• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rendimento de grãos e de óleo do crambe em um latossolo: Análise espacial e modelos de corrlação / Grains yield and oil content of crambe in an oxisol: Spatial analisys and corelation models

Marins, Araceli Ciotti de 28 November 2014 (has links)
The growing environmental awareness regarding production and use of renewable fuels has led many of countries to create policies to benefit producers of renewable fuels. Thus, the search for raw materials for production of biofuels, which do not conflict with the global food production and exhibit similar performance to fossil fuels, has generated interest towards crambe, a crop of high oil content, inappropriate for animal consumption and which can be applied in crop rotation without the need for exchange farm machinery. However, studies evaluating the influence of spatial variability of soil chemical and physical properties on grain yield and oil content of crambe are scarce. Thus, this study aimed to evaluate the spatial correlation between physical and chemical properties of an Oxisol under compaction states with grain yield and oil content of crambe, through a cross-correlation estimator based on moving windows and assess adequate sampling density for application of geostatistics. For this, we used geostatistical techniques such as kriging and simulation data and using software R. We concluded that increased bulk density and soil resistance to penetration change the source:sinc relationship of crambe, reflecting in lower yield but with grain production of higher quality; chemical attributes that have higher direct spatial relationship to grain yield of crambe are phosphorus, calcium, magnesium and organic matter; sampling grids constructed with points spaced at large distances are not effective in detecting the spatial variability of chemical attributes and grain yield and oil content of crambe; and that the cross semivariogram based on moving windows detects the structure of spatial correlation between the physical and chemical soil properties, independent of its variability or dispersion, showing superior performance when the data have outliers and do not have normal distribution. / A crescente conscientização ambiental a respeito da produção e uso de combustíveis renováveis tem levado muitos países a criar políticas que beneficiam os produtores destes combustíveis. Assim, a busca por matéria-prima para produção dos biocombustíveis não conflitantes com a produção mundial de alimentos e que apresentem desempenho semelhante aos combustíveis fósseis despertou interesse pelo crambe, uma cultura de grande teor energético, imprópria para o consumo animal e que pode ser aplicada em rotação de culturas sem a necessidade de troca de maquinário agrícola. No entanto, estudos avaliando a influência da variabilidade espacial de atributos químicos e físicos no rendimento de grãos e no teor de óleo do crambe ainda são escassos. Neste sentido, este trabalho objetivou principalmente avaliar a correlação espacial entre atributos físicos e químicos de um Latossolo sob estados de compactação, com o rendimento de grãos e de óleo do crambe, através de um estimador de correlação cruzada baseado em janelas móveis e avaliar a densidade amostral adequada para aplicação da geoestatística. Para isto, utilizaram-se técnicas de geoestatística como a simulação de dados e krigagem com auxílio do software R. Concluiu-se que o aumento da densidade e da resistência do solo altera a relação fonte:dreno do crambe, repercutindo em menor rendimento de grãos, porém com produção de grãos de maior qualidade; os atributos químicos que apresentam maior relação espacial direta com o rendimento de grãos do crambe são o fósforo, cálcio, magnésio e matéria orgânica; malhas amostrais construídas com pontos espaçados a grandes distâncias não são eficazes na detecção da variabilidade espacial de atributos químicos e do rendimento de grãos e teor de óleo do crambe; e que o semivariograma cruzado baseado em janelas móveis detecta a estrutura de correlação espacial entre os atributos físicos e químicos do solo, independente de sua variabilidade ou dispersão, apresentando desempenho superior quando os dados apresentam outliers e não possuem distribuição normal.
2

Influência de configurações amostrais na qualidade de estimação espacial sob o uso de modelos espaciais bivariados / The influence of sample configurations in quality pet under the use of spatial models bivariate

Cantu, Jacqueline Gabriela 02 February 2015 (has links)
Made available in DSpace on 2017-05-12T14:47:07Z (GMT). No. of bitstreams: 1 protegidoJacqueline_dissertacao.pdf: 3012964 bytes, checksum: 337f371fa8c665bb4fdfdc22709938da (MD5) Previous issue date: 2015-02-02 / The soil spatial variability s studies are based in geostatistics which appears as a method whose data comes from natural phenomena and consider the geographical location of the phenomenon. If in an area under study the researcher has interest in searching the variability of variables and has evidence that the steps which describe the spatial structure of this variables aren t independent a geostatistical bivariate model study can be proposed. This work concentrates on evaluating the variation s influence of the bivariate Gaussian common component model (BGCCM) parameters in calculating the Pearson correlation coefficient and analyzing the influence that sizes and sampling settings may present at the BGCCM s estimation and at spatial prediction variables in non-sampled locations. Moreover, for co-placed samples, crossed semivariograms were built and compared with univariate model and BGCCM, in relation to estimates of the model and the sizes associated with the spatial prediction. In order to do it, these methodologies were applied in simulated data sets and experimental data, from an agricultural property. The simulation study of the parameters variation influence s analysis of the bivariate model BGCCM in calculating the Pearson correlation coefficient between described variables of bivariate model BGCCM revealed that the Pearson s linear correlation coefficient can t be considered in decision-making about the presence of joint spatial dependence between pairs of variables. In the study with simulations, it was observed that the biggest differences of accuracy measures and the square sum of the spatial prediction s difference occurred when the univariate models and crossed semivariogram were compared to the BGCCM. Moreover, the simulation s study observed that for balanced data the regular and irregular meshes showed better efficiency as the spatial prediction. The study with real data showed that under the BGCCM approach, spatial dependence was observed, mainly between pH and Mn for co-placed and balanced data of the agriculture year 2010/2011; and between the variable inside of the next pairs: (Prod, RSP0-10), (Prod, RSP11-20), (Prod, RSP21-30) and (Prod, Mn) for co-placed and balanced data of the agriculture year 2013/2014; and (Prod, RSP11-20) and (Prod, RSP21-30) for co-placed and unbalanced data of the agriculture year 2013/2014. Still considering the real data study comparing the univariated models, crossed semivariogram and BGCCM, differences could be observed in the square sum of prediction s difference and in the accuracy measures, both for balanced and unbalanced data. However, considering the real data and the control sample, the spatial prediction s quality using the BGCCM model was inefficient when compared to the quality resulted from the spatial prediction using the univariate model. Nevertheless, this result may have been influenced by the choice of sample configuration. / Estudos da variabilidade espacial do solo estão baseados na geoestatística, que se apresenta como um método cujos dados provêm de fenômenos naturais e que consideram a localização geográfica do fenômeno. Se numa área em estudo o pesquisador tem interesse em pesquisar a variabilidade das variáveis e se há evidências que os passos que descrevem a estrutura espacial dessas variáveis não são independentes pode-se propor o estudo de um modelo geoestatístico bivariado. Este trabalho concentrou-se em avaliar a influência da variação dos parâmetros do modelo bivariado com componente de correlação parcialmente comum (bivariate Gaussian common component model BGCCM) no cálculo do coeficiente de correlação linear de Pearson e analisar a influência que tamanhos e configurações amostrais podem apresentar na estimação do modelo BGCCM e na predição espacial de variáveis em localizações não amostradas. Além disso, para amostras co-locadas, construíram-se os semivariogramas cruzados e comparou-se com o modelo univariado e BGCCM, em relação às estimativas do modelo e as medidas associadas à predição espacial. Para isso, essas metodologias foram aplicadas em conjuntos de dados simulados e dados experimentais, provenientes de uma propriedade agrícola. O estudo de simulação da análise da influência da variação dos parâmetros do modelo bivariado BGCCM no cálculo do coeficiente de correlação linear de Pearson entre as variáveis descritas do modelo bivariado BGCCM revelou que o coeficiente de correlação linear de Pearson não pode ser considerado na tomada de decisão quanto à presença de dependência espacial conjunta entre pares de variáveis. No estudo com simulações observou-se que as maiores diferenças das medidas de acurácia e da soma quadrada da diferença entre as predições espaciais ocorreram quando se comparou os modelos univariado e semivariograma cruzado com o BGCCM. Ainda no estudo de simulação observou-se que para os dados balanceados as malhas regular e irregular apresentaram melhor eficiência quanto à predição espacial. O estudo com dados reais mostrou que, sob a abordagem do modelo BGCCM, observou-se a presença de dependência espacial principalmente entre pH e Mn para dados co-locados e balanceados do ano agrícola 2010/2011; e entre as variáveis dentro dos seguintes pares: (Prod, RSP0-10), (Prod, RSP11-20), (Prod, RSP21-30) e (Prod, Mn) para dados co-locados e balanceados do ano agrícola 2013/2014; e (Prod, RSP11-20) e (Prod, RSP21-30) para dados co-locados e desbalanceados do ano agrícola 2013/2014. Ainda considerando o estudo com dados reais comparando os modelos univariado, semivariograma cruzado e BGCCM, mostraram diferenças na soma quadrada da diferença da predição e nas medidas acurácia, tanto para dados balanceados como para os desbalanceados. No entanto, considerando os dados reais e a amostra controle, a qualidade da predição espacial usando o modelo BGCCM se mostrou ineficiente quando comparada com a qualidade obtida na predição espacial usando o modelo univariado. Porém, esse resultado pode ter sido influenciado pela escolha da configuração amostral utilizada.
3

Influência de configurações amostrais na qualidade de estimação espacial sob o uso de modelos espaciais bivariados / The influence of sample configurations in quality pet under the use of spatial models bivariate

Cantu, Jacqueline Gabriela 02 February 2015 (has links)
Made available in DSpace on 2017-07-10T19:23:53Z (GMT). No. of bitstreams: 1 protegidoJacqueline_dissertacao.pdf: 3012964 bytes, checksum: 337f371fa8c665bb4fdfdc22709938da (MD5) Previous issue date: 2015-02-02 / The soil spatial variability s studies are based in geostatistics which appears as a method whose data comes from natural phenomena and consider the geographical location of the phenomenon. If in an area under study the researcher has interest in searching the variability of variables and has evidence that the steps which describe the spatial structure of this variables aren t independent a geostatistical bivariate model study can be proposed. This work concentrates on evaluating the variation s influence of the bivariate Gaussian common component model (BGCCM) parameters in calculating the Pearson correlation coefficient and analyzing the influence that sizes and sampling settings may present at the BGCCM s estimation and at spatial prediction variables in non-sampled locations. Moreover, for co-placed samples, crossed semivariograms were built and compared with univariate model and BGCCM, in relation to estimates of the model and the sizes associated with the spatial prediction. In order to do it, these methodologies were applied in simulated data sets and experimental data, from an agricultural property. The simulation study of the parameters variation influence s analysis of the bivariate model BGCCM in calculating the Pearson correlation coefficient between described variables of bivariate model BGCCM revealed that the Pearson s linear correlation coefficient can t be considered in decision-making about the presence of joint spatial dependence between pairs of variables. In the study with simulations, it was observed that the biggest differences of accuracy measures and the square sum of the spatial prediction s difference occurred when the univariate models and crossed semivariogram were compared to the BGCCM. Moreover, the simulation s study observed that for balanced data the regular and irregular meshes showed better efficiency as the spatial prediction. The study with real data showed that under the BGCCM approach, spatial dependence was observed, mainly between pH and Mn for co-placed and balanced data of the agriculture year 2010/2011; and between the variable inside of the next pairs: (Prod, RSP0-10), (Prod, RSP11-20), (Prod, RSP21-30) and (Prod, Mn) for co-placed and balanced data of the agriculture year 2013/2014; and (Prod, RSP11-20) and (Prod, RSP21-30) for co-placed and unbalanced data of the agriculture year 2013/2014. Still considering the real data study comparing the univariated models, crossed semivariogram and BGCCM, differences could be observed in the square sum of prediction s difference and in the accuracy measures, both for balanced and unbalanced data. However, considering the real data and the control sample, the spatial prediction s quality using the BGCCM model was inefficient when compared to the quality resulted from the spatial prediction using the univariate model. Nevertheless, this result may have been influenced by the choice of sample configuration. / Estudos da variabilidade espacial do solo estão baseados na geoestatística, que se apresenta como um método cujos dados provêm de fenômenos naturais e que consideram a localização geográfica do fenômeno. Se numa área em estudo o pesquisador tem interesse em pesquisar a variabilidade das variáveis e se há evidências que os passos que descrevem a estrutura espacial dessas variáveis não são independentes pode-se propor o estudo de um modelo geoestatístico bivariado. Este trabalho concentrou-se em avaliar a influência da variação dos parâmetros do modelo bivariado com componente de correlação parcialmente comum (bivariate Gaussian common component model BGCCM) no cálculo do coeficiente de correlação linear de Pearson e analisar a influência que tamanhos e configurações amostrais podem apresentar na estimação do modelo BGCCM e na predição espacial de variáveis em localizações não amostradas. Além disso, para amostras co-locadas, construíram-se os semivariogramas cruzados e comparou-se com o modelo univariado e BGCCM, em relação às estimativas do modelo e as medidas associadas à predição espacial. Para isso, essas metodologias foram aplicadas em conjuntos de dados simulados e dados experimentais, provenientes de uma propriedade agrícola. O estudo de simulação da análise da influência da variação dos parâmetros do modelo bivariado BGCCM no cálculo do coeficiente de correlação linear de Pearson entre as variáveis descritas do modelo bivariado BGCCM revelou que o coeficiente de correlação linear de Pearson não pode ser considerado na tomada de decisão quanto à presença de dependência espacial conjunta entre pares de variáveis. No estudo com simulações observou-se que as maiores diferenças das medidas de acurácia e da soma quadrada da diferença entre as predições espaciais ocorreram quando se comparou os modelos univariado e semivariograma cruzado com o BGCCM. Ainda no estudo de simulação observou-se que para os dados balanceados as malhas regular e irregular apresentaram melhor eficiência quanto à predição espacial. O estudo com dados reais mostrou que, sob a abordagem do modelo BGCCM, observou-se a presença de dependência espacial principalmente entre pH e Mn para dados co-locados e balanceados do ano agrícola 2010/2011; e entre as variáveis dentro dos seguintes pares: (Prod, RSP0-10), (Prod, RSP11-20), (Prod, RSP21-30) e (Prod, Mn) para dados co-locados e balanceados do ano agrícola 2013/2014; e (Prod, RSP11-20) e (Prod, RSP21-30) para dados co-locados e desbalanceados do ano agrícola 2013/2014. Ainda considerando o estudo com dados reais comparando os modelos univariado, semivariograma cruzado e BGCCM, mostraram diferenças na soma quadrada da diferença da predição e nas medidas acurácia, tanto para dados balanceados como para os desbalanceados. No entanto, considerando os dados reais e a amostra controle, a qualidade da predição espacial usando o modelo BGCCM se mostrou ineficiente quando comparada com a qualidade obtida na predição espacial usando o modelo univariado. Porém, esse resultado pode ter sido influenciado pela escolha da configuração amostral utilizada.
4

Métodos geoestatísticos de co-estimativas: estudo do efeito da correlação entre variáveis na precisão dos resultados / Co-estimation geostatistical methods: a study of the correlation between variables at results precision

Watanabe, Jorge 29 February 2008 (has links)
Esta dissertação de mestrado apresenta os resultados de uma investigação sobre os métodos de co-estimativa comumente utilizados em geoestatística. Estes métodos são: cokrigagem ordinária; cokrigagem colocalizada e krigagem com deriva externa. Além disso, a krigagem ordinária foi considerada apenas a título de ilustração como esse método trabalha quando a variável primária estiver pobremente amostrada. Como sabemos, os métodos de co-estimativa dependem de uma variável secundária amostrada sobre o domínio a ser estimado. Adicionalmente, esta variável deveria apresentar correlação linear com a variável principal ou variável primária. Geralmente, a variável primária é pobremente amostrada enquanto a variável secundária é conhecida sobre todo o domínio a ser estimado. Por exemplo, em exploração petrolífera, a variável primária é a porosidade medida em amostras de rocha retiradas de testemunhos e a variável secundária é a amplitude sísmica derivada de processamento de dados de reflexão sísmica. É importante mencionar que a variável primária e a variável secundária devem apresentar algum grau de correlação. Contudo, nós não sabemos como eles funcionam dependendo do grau de correlação. Esta é a questão. Assim, testamos os métodos de co-estimativa para vários conjuntos de dados apresentando diferentes graus de correlação. Na verdade, esses conjuntos de dados foram gerados em computador baseado em algoritmos de transformação de dados. Cinco valores de correlação foram considerados neste estudo: 0,993, 0,870, 0,752, 0,588 e 0,461. A cokrigagem colocalizada foi o melhor método entre todos testados. Este método tem um filtro interno que é aplicado no cálculo do peso da variável secundária, que por sua vez depende do coeficiente de correlação. De fato, quanto maior o coeficiente de correlação, maior é o peso da variável secundária. Então isso significa que este método funciona mesmo quando o coeficiente de correlação entre a variável primária e a variável secundária é baixo. Este é o resultado mais impressionante desta pesquisa. / This master dissertation presents the results of a survey into co-estimation methods commonly used in geostatistics. These methods are ordinary cokriging, collocated cokriging and kriging with an external drift. Besides that ordinary kriging was considered just to illustrate how it does work when the primary variable is poorly sampled. As we know co-estimation methods depend on a secondary variable sampled over the estimation domain. Moreover, this secondary variable should present linear correlation with the main variable or primary variable. Usually the primary variable is poorly sampled whereas the secondary variable is known over the estimation domain. For instance in oil exploration the primary variable is porosity as measured on rock samples gathered from drill holes and the secondary variable is seismic amplitude derived from processing seismic reflection data. It is important to mention that primary and secondary variables must present some degree of correlation. However, we do not know how they work depending on the correlation coefficient. That is the question. Thus, we have tested co-estimation methods for several data sets presenting different degrees of correlation. Actually, these data sets were generated in computer based on some data transform algorithms. Five correlation values have been considered in this study: 0.993; 0.870; 0.752; 0.588 and 0.461. Collocated simple cokriging was the best method among all tested. This method has an internal filter applied to compute the weight for the secondary variable, which in its turn depends on the correlation coefficient. In fact, the greater the correlation coefficient the greater the weight of secondary variable is. Then it means this method works even when the correlation coefficient between primary and secondary variables is low. This is the most impressive result that came out from this research.
5

Métodos geoestatísticos de co-estimativas: estudo do efeito da correlação entre variáveis na precisão dos resultados / Co-estimation geostatistical methods: a study of the correlation between variables at results precision

Jorge Watanabe 29 February 2008 (has links)
Esta dissertação de mestrado apresenta os resultados de uma investigação sobre os métodos de co-estimativa comumente utilizados em geoestatística. Estes métodos são: cokrigagem ordinária; cokrigagem colocalizada e krigagem com deriva externa. Além disso, a krigagem ordinária foi considerada apenas a título de ilustração como esse método trabalha quando a variável primária estiver pobremente amostrada. Como sabemos, os métodos de co-estimativa dependem de uma variável secundária amostrada sobre o domínio a ser estimado. Adicionalmente, esta variável deveria apresentar correlação linear com a variável principal ou variável primária. Geralmente, a variável primária é pobremente amostrada enquanto a variável secundária é conhecida sobre todo o domínio a ser estimado. Por exemplo, em exploração petrolífera, a variável primária é a porosidade medida em amostras de rocha retiradas de testemunhos e a variável secundária é a amplitude sísmica derivada de processamento de dados de reflexão sísmica. É importante mencionar que a variável primária e a variável secundária devem apresentar algum grau de correlação. Contudo, nós não sabemos como eles funcionam dependendo do grau de correlação. Esta é a questão. Assim, testamos os métodos de co-estimativa para vários conjuntos de dados apresentando diferentes graus de correlação. Na verdade, esses conjuntos de dados foram gerados em computador baseado em algoritmos de transformação de dados. Cinco valores de correlação foram considerados neste estudo: 0,993, 0,870, 0,752, 0,588 e 0,461. A cokrigagem colocalizada foi o melhor método entre todos testados. Este método tem um filtro interno que é aplicado no cálculo do peso da variável secundária, que por sua vez depende do coeficiente de correlação. De fato, quanto maior o coeficiente de correlação, maior é o peso da variável secundária. Então isso significa que este método funciona mesmo quando o coeficiente de correlação entre a variável primária e a variável secundária é baixo. Este é o resultado mais impressionante desta pesquisa. / This master dissertation presents the results of a survey into co-estimation methods commonly used in geostatistics. These methods are ordinary cokriging, collocated cokriging and kriging with an external drift. Besides that ordinary kriging was considered just to illustrate how it does work when the primary variable is poorly sampled. As we know co-estimation methods depend on a secondary variable sampled over the estimation domain. Moreover, this secondary variable should present linear correlation with the main variable or primary variable. Usually the primary variable is poorly sampled whereas the secondary variable is known over the estimation domain. For instance in oil exploration the primary variable is porosity as measured on rock samples gathered from drill holes and the secondary variable is seismic amplitude derived from processing seismic reflection data. It is important to mention that primary and secondary variables must present some degree of correlation. However, we do not know how they work depending on the correlation coefficient. That is the question. Thus, we have tested co-estimation methods for several data sets presenting different degrees of correlation. Actually, these data sets were generated in computer based on some data transform algorithms. Five correlation values have been considered in this study: 0.993; 0.870; 0.752; 0.588 and 0.461. Collocated simple cokriging was the best method among all tested. This method has an internal filter applied to compute the weight for the secondary variable, which in its turn depends on the correlation coefficient. In fact, the greater the correlation coefficient the greater the weight of secondary variable is. Then it means this method works even when the correlation coefficient between primary and secondary variables is low. This is the most impressive result that came out from this research.

Page generated in 0.071 seconds