1 |
COMMAND CENTER FOR THE SDI DELTA 181 SENSOR MODULEHeins, Robert J. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / An orbiting sensor module, designed by The Johns Hopkins University Applied Physics
Laboratory (JHU/APL), performed a number of significant Strategic Defense Initiative
(SDI) Delta 181 program experiments. These experiments required on-orbit command and
monitor operations involving a worldwide network of ground facilities. A major
component was the sensor module command center (SMCC), which was designed and
integrated by JHU/APL. The SMCC, located at Cape Canaveral Air Force Station
(CCAFS), connected to a network of Eastern Test Range, Air Force Satellite Control
Network (AFSCN), Kennedy Space Center, and Western Test Range assets.
The complex nature of the mission presented numerous challenges to the design,
integration, and operation of the SMCC. This paper presents a functional overview of
SMCC design as well as unique aspects of supporting ground network telemetry and
command operation.
|
2 |
Passive Thermochemical Energy Storage System for Low Power Sensor Modules for Space ApplicationsJanuary 2016 (has links)
abstract: Surface exploration of the Moon and Asteroids can provide important information to scientists regarding the origins of the solar-system and life . Small robots and sensor modules can enable low-cost surface exploration. In the near future, they are the main machines providing these answers. Advanced in electronics, sensors and actuators enable ever smaller platforms, with compromising functionality. However similar advances haven’t taken place for power supplies and thermal control system. The lunar south pole has temperatures in the range of -100 to -150 oC. Similarly, asteroid surfaces can encounter temperatures of -150 oC. Most electronics and batteries do not work below -40 oC. An effective thermal control system is critical towards making small robots and sensors module for extreme environments feasible.
In this work, the feasibility of using thermochemical storage materials as a possible thermal control solution is analyzed for small robots and sensor modules for lunar and asteroid surface environments. The presented technology will focus on using resources that is readily generated as waste product aboard a spacecraft or is available off-world through In-Situ Resource Utilization (ISRU).
In this work, a sensor module for extreme environment has been designed and prototyped. Our intention is to have a network of tens or hundreds of sensor modules that can communicate and interact with each other while also gathering science data. The design contains environmental sensors like temperature sensors and IMU (containing accelerometer, gyro and magnetometer) to gather data. The sensor module would nominally contain an electrical heater and insulation. The thermal heating effect provided by this active heater is compared with the proposed technology that utilizes thermochemical storage chemicals.
Our results show that a thermochemical storage-based thermal control system is feasible for use in extreme temperatures. A performance increase of 80% is predicted for the sensor modules on the asteroid Eros using thermochemical based storage system. At laboratory level, a performance increase of 8 to 9 % is observed at ambient temperatures of -32oC and -40 oC. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
|
3 |
ConBus: Uma Plataforma de Middleware de Integração de Sensores para o Desenvolvimento de Aplicações Móveis Sensíveis ao Contexto / ConBus: A Sensor Integration Middleware Platform for Mobile Context-Aware Application DevelopmentSÁ, Marcio Pereira de 26 April 2010 (has links)
Made available in DSpace on 2014-07-29T14:57:53Z (GMT). No. of bitstreams: 1
Marcio pereira.pdf: 5468645 bytes, checksum: c32705115b5d19bad90c4f72b43826ce (MD5)
Previous issue date: 2010-04-26 / In spite of the great evolution and dissemination of mobile devices and embedded
sensors, development of ubiquitous applications is still a complex task mainly due to the
great diversity of context information and the abundance of sensor technologies. In this
scenario, middleware systems are responsible mediating communication between contextaware
applications and sensors. This responsibility envolves many services such as sensor
communication protocols, asynchronous communication, context information reasoning.
In spite of their importance for mobile context-aware applications, the development of
middleware platforms for context provisioning is also a very complex task, specially in
terms of sensor module integration to these platforms. This happens due to many factors,
such as: i) huge complexity to develop sensor modules; ii) dificulties of reuse of sensor
modules; and iii) sensor module life cycle management. This work proposes a context
provisioning middleware architecture for mobile devices named ConBus (Context Bus)
that implements development, reuse, deployment and dynamic activation strategies for
sensor modules. / Apesar da grande evolução e disseminação dos dispositivos móveis e sensores acoplados,
desenvolver aplicações ubíquas ainda é uma tarefa complexa, principalmente, devido à
grande diversidade de informações contextuais e à abundância de tecnologias de sensoriamento.
Nesse cenário, sistemas de middleware assumem a responsabilidade de intermediar
a comunicação entre as aplicações sensíveis ao contexto e os sensores que são
as fontes de informações contextuais. Essa responsabilidade envolve diversos serviços,
como implementar protocolos de comunicação com sensores heterogêneos, disponibilizar
a comunicação assíncrona, possibilitar a inferência de informações contextuais, além da
manutenção de modelos de contexto de alto nível. Entretanto, o desenvolvimento de plataformas
de middleware para a provisão de contexto também é uma tarefa muito complexa,
especialmente com relação à integração de módulos de sensoriamento a tais infraestruturas.
Esses módulos de sensoriamento são os componentes de software das aplicações
responsáveis pelo acesso aos dados de contexto coletados pelos sensores. Dentre os principais
problemas relativos à essa integração estão: i) a complexidade inerente ao desenvolvimento
de módulos de sensoriamento, que usualmente envolvem chamadas de baixo
nível ao sistema operacional ou exigem a implementação de protocolos de comunicação
para acesso a sensores remotos; ii) dificuldade de reutilização dos módulos de sensoriamento
devido à falta de mecanismos que facilitem a disponibilização e a manutenção de
tais módulos; e iii) o gerenciamento do ciclo de vida de módulos de sensoriamento acoplados
à plataforma. Com o propósito de lidar com tais desafios, este trabalho propõe uma
arquitetura de middleware para provisão de contexto em dispositivos móveis, denominada
ConBus (Context Bus), que implementa estratégias de desenvolvimento, reutilização, implantação
e ativação dinâmica de módulos de sensoriamento, fazendo uso racional dos
recursos computacionais do dispositivo.
|
Page generated in 0.047 seconds