• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 31
  • 4
  • 4
  • 3
  • Tagged with
  • 87
  • 34
  • 18
  • 15
  • 14
  • 14
  • 12
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Energieeffiziente Anpassung des Arbeitszyklus in drahtlosen Sensornetzen

Neugebauer, Mario 29 January 2007 (has links)
Drahtlose Sensornetze können Zustände physikalischer Größen messen und an eine Basisstation (Datensenke) melden. Durch die geographische Verteilung der Sensorknoten und die Bedingungen bei der Mehrwegeausbreitung kann die Situation auftreten, dass nicht alle Sensorknoten direkten Kontakt zur Basisstation aufbauen können. Sie müssen andere Sensorknoten als Vermittlungsstation in Anspruch nehmen, um die Nachrichten an die Basisstation zu befördern. Um den Energieverbrauch zu verringern, werden Nachrichten zum einen ereignisbasiert generiert und zum anderen zeitbasiert vermittelt. Dabei beschreibt der Arbeitszyklus den Anteil der Vermittlungsaktivität am Gesamtzyklus. Derzeit verfügbare Methoden berücksichtigen allerdings nicht die Verknüpfung zwischen dem von der Anwendung generierten Verkehr und der Vermittlungshäufigkeit. In der vorliegenden Arbeit wird ein Verfahren vorgeschlagen, mit dem der Arbeitszyklus zur Laufzeit automatisch eingestellt werden kann. Dafür wird in der Vermittlungsstation die Verkehrscharakteristik gemessen und für die Einstellung des Arbeitszyklus benutzt. Die Leistungsfähigkeit der Anpassung des Arbeitszyklus wird mit Simulationen untersucht. Sie zeigen, wie sich der Ansatz bei verschiedener Parametrierung in statischen und dynamischen Szenarien verhält. Um dem späteren Anwender der Anpassung eine Abschätzung des Verhaltens zu ermöglichen, werden zusätzlich analytische Modelle für die Analyse des statischen und dynamischen Verhaltens entwickelt. Ferner wird gezeigt, dass der entwickelte Ansatz für etablierte Standardtechniken (z. B. IEEE 802.15.4) eingesetzt werden kann. / Wireless Sensor Networks support flexible measuring of physical values. Due to the geographical distribution and multipath scattering the base station in such a network might not be reached by all sensors. Hence, other sensor nodes have to work as relay stations. At the same time, each sensor node is forced to consume as low energy as possible. In order to save energy the messages are generated event based in each sensor node and forwarded with a time triggered approach. Thereby, the duty cycle describes the portion of the relay activities in relation to the overall cycle. Currently available approaches do not properly adapt these two paradigms, event and time triggered, to each other. In this work a method to adapt the duty cycle according to the traffic is proposed. Therefore, the traffic is monitored and evaluated for traffic adaptation. Furthermore, the performance of the duty cycle adaptation is assessed using simulations. They show the behavior of the adaptation algorithm in static and dynamic scenarios with different parametrizations. The supplemental analytical models enable to easily estimate the behavior of the adaptation, in static as well as in dynamic scenarios. Also, it is shown how the duty cycle adaptation can be deployed for standard technologies like IEEE 802.15.4.
82

Rissdetektion und -lokalisierung in Betonstrukturen mittels Auswertung elektromagnetischer Hochfrequenzwellen

Hegler, Sebastian, Mechtcherine, Viktor, Liebscher, Marco, Plettemeier, Dirk 10 November 2022 (has links)
Das Erkennen und die Lokalisierung kritischer Risse ist ein wesentlicher Schlüssel für eine sichere und nachhaltige Bauwerksnutzung. In diesem Beitrag wird ein neuartiges, kostengünstiges Sensorsystem vorgestellt, das zur Echtzeit-Zustandsüberwachung von sowohl neuen als auch Bestandsbauwerken geeignet ist. Erste Ergebnisse zeigen, dass das System prinzipiell in der Lage ist, die Gesamtdehnung eines Bauteiles zu erfassen sowie auftretende Risse zu erkennen und zu lokalisieren. Die Erkennungsgenauigkeit hängt dabei von technischen Parametern ab, wodurch das System auf verschiedene Einsatzszenarien angepasst werden kann.
83

Battery Driven Embedded System for Indoor Localization of Pneumatic Tools

Hjort, Kajsa January 2020 (has links)
As the rapid progress in technology changes our daily life, it also changes how the Industry works. The new developments enable technologies such as the Internet of Moving Things (IoMT), and through these technologies, new challenges arise. IoMT adds one more vital issue, localization, to be solved in comparison to the Internet of Things (IoT). To enable IoMT in the manufacturing industry, there are still problems that need to be overcome. Critical statements such as power consumption, price, accuracy, data management, and size. In this thesis, an evaluation of a new sensor system for an air pneumatic grinder is conducted. The features of the sensor system are to report data from the grinder to the cloud and to localize the position of the grinder. The focus was to optimize the localization algorithm and power consumption of the system. The localization of the grinder was conducted with a new and improved algorithm, Ring Error Difference System (REDS), introduced in this thesis. The new algorithm increased the previous known iRingLA accuracy from 2.91 m to 2.33 m for Bluetooth Low Energy (BLE) and from 3.99 m to 2.84 for Wi-Fi, according to the experiments performed. The final system was able to estimate the operation runtime with an error of 24 s for an operational runtime of 905 s. The operational lifetime of the system was 242 h and 45 h, respectively, for BLE and Wi-Fi. An optimized software was introduced to decrease power consumption. The optimized version was estimated to have an operational lifetime of 1540 h for BLE, which did not reach the wanted lifetime of 3000 h set by Atlas Copco. Hence, I conclude that the hardware, Wemos ESP32, used in the thesis, is not feasible for this solution. Simpler hardware, than the Wemos ESP32, should be used to be able to reach the goal of 3000 h. / De stora framstegen inom dagens teknik förvandlar inte bara vårt dagliga liv det förändrar också tekniken inom industrin. Den nya tekniken möjliggör framsteg så som Internet of Moving Things (IOMT), vilket leder till nya utmaningar. IoMT jämfört med Internet of Things (IoT) lägger till ytterligare utmaningar att lösa så som lokalisering. För att kunna använda IoMT inom tillverkningsindustrin måste ett flertal problem hanteras så som strömförbrukning, pris och noggrannhet på lokaliseringen, datahantering och storlek på systemet. I denna masteruppsatts gör jag en utvärdering av ett nytt sensorsystem för luftdrivna slipmaskiner. Detta sensorsystem rapporterar data från slipmaskinen till molnet och rapporterar positionen av utrustningen. Fokuset på uppsatsen var att optimera lokaliseringsalgoritmen och minska strömförbrukningen för systemet. Lokaliseringen av slipmaskinen gjordes med en ny och förbättrad algoritm, Ring Error Difference System (REDS), som jag introducerar i avhandlingen. Algoritmen förbättrade den tidigare kända RSSI-baserade iRingLA från 2,91 m till 2,33 m med Bluetooth Low Energy (BLE) och från 3,99 m till 2,84 m för Wi-Fi. Det slutliga systemet kunde uppskatta drifttiden med en avvikelse på 24 s av den verkliga drifttiden, 905 s. Systemets operativa livslängd var 242 timmar och 45 timmar för BLE respektive Wi-Fi. Dessutom infördes en optimerad programvara för att minska strömförbrukningen. Den optimerade versionen beräknades ha en livslängd på 1540 timmar för BLE, vilket inte når den önskade livslängden på 3000 timmar satt av Atlas Copco. Ifrån mitt arbete drar jag slutsatsen att hårdvaran som används i uppsatsen, inte kan användas i en slutlig produkt. En enklare hårdvara än Wemos ESP32 bör användas för att kunna nå målet på 3000 timmar.
84

Nutzung der Photolumineszenz von Quantenpunkten für die Belastungsdetektion an Leichtbaumaterialien

Möbius, Martin 17 February 2021 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines neuartigen, autarken, folienbasierten Sensorsystems für die Belastungsdetektion an Leichtbaumaterialien. Das integrierte Sensorsystem ist in der Lage mechanische Belastungen über die Photolumineszenz von Quantum Dots visuell darzustellen, wodurch strukturelle Defekte in Leichtbaumaterialien frühzeitig erkannt und ein Totalausfall einer gesamten Leichtbaukonstruktion verhindert werden kann. Dies führt neben einer erhöhten Sicherheit einzelner Komponenten und kompletter Konstruktionen auch zu Gewichts-, Kosten- und Rohstoffersparnissen. Die gezielte Beeinflussung der Photolumineszenz von Quantum Dots durch Ladungsträgerinjektion als Hauptmechanismus des Sensorsystems erfordert spezielle Lagenaufbauten von Dünnschichtsystemen. Durch die Kombination dieser Dünnschichtsysteme mit piezoelektrischen Materialien entsteht ein autarkes Sensorsystem, wodurch eine Auswertung, Visualisierung und Speicherung der Information über eine stattgefundene mechanische Belastung an Leichtbaumaterialien auf kleinsten Raum erreicht wird.:Inhaltsverzeichnis Formelverzeichnis Abkürzungsverzeichnis Vorwort 1 Einleitung 1.1 Motivation 1.2 Zielstellung 2 Autarker Sensor für mechanische Beanspruchungen 2.1 Sensorkonzept, -aufbau und Funktionsweise 2.2 Anforderungen an die Funktionalität 2.3 Stand der Technik 3 Theoretische Grundlagen 3.1 Quantum Dots 3.1.1 Größenquantisierungseffekt 3.1.2 Photolumineszenz 3.1.3 Aufbau und Materialien 3.1.4 Kommerziell erhältliche Quantum Dots 3.2 Mechanismen zur Beeinflussung der Photolumineszenz 3.2.1 Ladungsträgerinjektion in den QD Kern 3.2.2 Feldinduzierte Ionisation des Exzitons 3.2.3 Weitere Mechanismen 3.3 Ladungsträgertransportschichten 3.3.1 Poly(N-vinylkarbazol) 3.3.2 N,N,N´,N´-Tetrakis(3-methylphenyl)-3,3´-dimethylbenzidin 3.3.3 Poly(3,4-ethylendioxythiophen)-poly(styrolsulfonat) 3.4 Lithiumfluorid als elektrischer Isolator 3.5 Modellsysteme 3.5.1 Einbettung der QDs in organische Lochtransportschichten 3.5.2 QDs zwischen Elektrode und organischer Lochtransportschicht 3.5.3 QDs zwischen Elektrode und Nichtleiter 4 Experimentelle Vorgehensweise 4.1 Layout und Kontaktierung von Teststrukturen 4.2 Verfahren zur Herstellung dünner Schichten 4.2.1 Physikalische Gasphasenabscheidung 4.2.2 Rotationsbeschichtung 4.2.3 Weitere Verfahren 4.3 Charakterisierung der Schichten und der Gesamtfunktionalität 4.3.1 Mikrospektroskopieaufbau 4.3.2 Weitere Messverfahren 4.4 Integration der Schichtstapel in Faserkunststoffverbund 5 Experimentelle Untersuchungen 5.1 Einordnung der einzelnen Schichten der Modellsysteme 5.1.1 Elektroden 5.1.2 Matrixmaterial und Quantum Dots 5.2 Einordnung des elektrischen Verhaltens der Modellsysteme 5.2.1 Modellsystem I 5.2.2 Modellsystem II 5.2.3 Modellsystem III 5.3 Einfluss externer Beleuchtung am Modellsystem II und III 5.3.1 Modellsystem II 5.3.2 Modellsystem III 5.4 Wiederholbarkeit der elektrischen Beanspruchung am Modellsystem III 5.4.1 Photolumineszenzintensität 5.4.2 Stromdichte 5.4.3 Gesamtwiderstand im Schichtstapel 5.5 Einfluss des elektrischen Feldes am Modellsystem III 5.5.1 Photolumineszenzintensität 5.5.2 Stromdichte 5.5.3 Widerstand 5.6 Einfluss der Integration auf das Verhalten von Modellsystem III 5.6.1 Optisches Verhalten der Laminiertasche und des Harzsystems 5.6.2 Funktionalität des Schichtstapels nach der Integration 5.7 Temperaturwechseltest am integrierten Schichtstapel 5.8 Speicherzeit elektrischer Ladungsträger am Modellsystem III 5.8.1 Stabilität des Lasers und der PL Intensität 5.8.2 Reproduzierbarkeit 5.8.3 Langzeitmessung 5.9 Kopplung des Schichtsystems mit piezoelektrischem Element 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Anhang A : Layouts für untere Elektrode E1 und obere Elektrode E2 Anhang B : Halter für die Kontaktierung der Teststrukturen Anhang C : Frontpanel zur Aufnahme der Photolumineszenz Anhang D : Messdaten Profilometer Veeco Dektak 150 Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Lebenslauf / This work focuses on the development of a novel, self-sufficient, film-based sensor system for load detection on lightweight materials. The integrated sensor system is capable to visualize mechanical loads on lightweight structures by quenching the photoluminescence of quantum dots. Structural defects in lightweight materials can thus be detected at an early stage and total failure of an entire lightweight structure can be prevented. In addition to increased safety of individual components and complete structures, this also leads to weight, cost and raw material savings. The quenching of the photoluminescence of quantum dots by charge carrier injection as the main mechanism of the sensor system requires special thin-film layer stacks. By combining these thin-film layer stacks with piezoelectric materials, a self-sufficient sensor system is created. An evaluation, visualization and storage of the information about a mechanical load that has taken place on lightweight materials is thus achieved in a very small space.:Inhaltsverzeichnis Formelverzeichnis Abkürzungsverzeichnis Vorwort 1 Einleitung 1.1 Motivation 1.2 Zielstellung 2 Autarker Sensor für mechanische Beanspruchungen 2.1 Sensorkonzept, -aufbau und Funktionsweise 2.2 Anforderungen an die Funktionalität 2.3 Stand der Technik 3 Theoretische Grundlagen 3.1 Quantum Dots 3.1.1 Größenquantisierungseffekt 3.1.2 Photolumineszenz 3.1.3 Aufbau und Materialien 3.1.4 Kommerziell erhältliche Quantum Dots 3.2 Mechanismen zur Beeinflussung der Photolumineszenz 3.2.1 Ladungsträgerinjektion in den QD Kern 3.2.2 Feldinduzierte Ionisation des Exzitons 3.2.3 Weitere Mechanismen 3.3 Ladungsträgertransportschichten 3.3.1 Poly(N-vinylkarbazol) 3.3.2 N,N,N´,N´-Tetrakis(3-methylphenyl)-3,3´-dimethylbenzidin 3.3.3 Poly(3,4-ethylendioxythiophen)-poly(styrolsulfonat) 3.4 Lithiumfluorid als elektrischer Isolator 3.5 Modellsysteme 3.5.1 Einbettung der QDs in organische Lochtransportschichten 3.5.2 QDs zwischen Elektrode und organischer Lochtransportschicht 3.5.3 QDs zwischen Elektrode und Nichtleiter 4 Experimentelle Vorgehensweise 4.1 Layout und Kontaktierung von Teststrukturen 4.2 Verfahren zur Herstellung dünner Schichten 4.2.1 Physikalische Gasphasenabscheidung 4.2.2 Rotationsbeschichtung 4.2.3 Weitere Verfahren 4.3 Charakterisierung der Schichten und der Gesamtfunktionalität 4.3.1 Mikrospektroskopieaufbau 4.3.2 Weitere Messverfahren 4.4 Integration der Schichtstapel in Faserkunststoffverbund 5 Experimentelle Untersuchungen 5.1 Einordnung der einzelnen Schichten der Modellsysteme 5.1.1 Elektroden 5.1.2 Matrixmaterial und Quantum Dots 5.2 Einordnung des elektrischen Verhaltens der Modellsysteme 5.2.1 Modellsystem I 5.2.2 Modellsystem II 5.2.3 Modellsystem III 5.3 Einfluss externer Beleuchtung am Modellsystem II und III 5.3.1 Modellsystem II 5.3.2 Modellsystem III 5.4 Wiederholbarkeit der elektrischen Beanspruchung am Modellsystem III 5.4.1 Photolumineszenzintensität 5.4.2 Stromdichte 5.4.3 Gesamtwiderstand im Schichtstapel 5.5 Einfluss des elektrischen Feldes am Modellsystem III 5.5.1 Photolumineszenzintensität 5.5.2 Stromdichte 5.5.3 Widerstand 5.6 Einfluss der Integration auf das Verhalten von Modellsystem III 5.6.1 Optisches Verhalten der Laminiertasche und des Harzsystems 5.6.2 Funktionalität des Schichtstapels nach der Integration 5.7 Temperaturwechseltest am integrierten Schichtstapel 5.8 Speicherzeit elektrischer Ladungsträger am Modellsystem III 5.8.1 Stabilität des Lasers und der PL Intensität 5.8.2 Reproduzierbarkeit 5.8.3 Langzeitmessung 5.9 Kopplung des Schichtsystems mit piezoelektrischem Element 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Anhang A : Layouts für untere Elektrode E1 und obere Elektrode E2 Anhang B : Halter für die Kontaktierung der Teststrukturen Anhang C : Frontpanel zur Aufnahme der Photolumineszenz Anhang D : Messdaten Profilometer Veeco Dektak 150 Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Lebenslauf
85

Accuracy Improvement of Predictive Neural Networks for Managing Energy in Solar Powered Wireless Sensor Nodes

Al_Omary, Murad 20 December 2019 (has links)
Das drahtlose Sensornetzwerk (WSN) ist eine Technologie, die Umgebungsbedingungen oder physikalische Parameter misst, weiterleitet und per Fernüberwachung zur Verfügung stellt. Normalerweise werden die Sensorknoten, die diese Netzwerke bilden, von Batterien gespeist. Diese sollen aus verschiedenen Gründen nicht mehr verwendet werden, sondern es wird auf eine eigenständige Stromversorgung gesetzt. Dies soll den aufwendigen Austausch und die Wartung minimieren. Energy Harvesting kann mit den Knoten verwendet werden, um die Batterien zu unterstützen und die Lebensdauer der Netzwerke zu verlängern. Aufgrund der hohen Leistungsdichte der Solarenergie im Vergleich zu verschiedenen anderen Umweltenergien sind Solarzellen die am häufigsten eingesetzten Wandler, allerdings stellt die schwankende und intermittierende Natur der Solarenergie eine Herausforderung dar, einen funktionalen und zuverlässigen Sensorknoten zu versorgen. Um den Sensorknoten effektiv zu betreiben, sollte sein Energieverbrauch sinnvoll gesteuert werden. Ein interessanter Ansatz zu diesem Zweck ist die Steuerung der Aktivitäten des Knotens in Abhängigkeit von der zukünftig verfügbaren Energie. Dies erfordert eine Vorhersage der wandelbaren Sonnenenergie für die kommenden Betriebszeiten einschließlich der freien Zeiten der Sonne. Einige Vorhersagealgorithmen wurden mit stochastischen und statistischen Prinzipien sowie mit Methoden der künstlichen Intelligenz (KI) erstellt. Durch diese Algorithmen bleibt ein erheblicher Vorhersagefehler von 5-70%, der den zuverlässigen Betrieb der Knoten beeinträchtigt. Beispielsweise verwenden die stochastischen Methoden einen diskreten Energiezustand, der meist nicht zu den tatsächlichen Messwerten passt. Die statistischen Methoden verwenden einen Gewichtungsfaktor für die zuvor registrierten Messwerte. Daher sind sie nur geeignet, um Energieprofile bei konstanten Wetterbedingungen vorherzusagen. KI-Methoden erfordern große Beobachtungen im Trainingsprozess, die den benötigten Speicherplatz erhöhen. Dementsprechend ist die Leistung hinsichtlich der Vorhersagegenauigkeit dieser Algorithmen nicht ausreichend. In dieser Arbeit wird ein Vorhersagealgorithmus mit einem neuronalen Netzwerk entwickelt und eingebunden in einen Mikrocontroller, um die Verwaltung des Energieverbrauchs von solarzellengesteuerten Sensorknoten zu optimieren. Das verwendete neuronale Netzwerk wurde mit einer Kombination aus meteorologischen und statistischen Eingangsparametern realisiert. Dies hat zum Ziel, die erforderlichen Designkriterien für Sensorknoten zu erfüllen und eine Leistung zu erreichen, die in ihrer Genauigkeit die Leistung der oben genannten traditionellen Algorithmen übersteigt. Die Vorhersagegenauigkeit die durch den Korrelationskoeffizienten repräsentiert wird, wurde für das entwickelte neuronale Netzwerk auf 0,992 bestimmt. Das genaueste traditionelle Netzwerk erreicht nur einen Wert von 0,963. Das entwickelte neuronale Netzwerk wurde in einen Prototyp eines Sensorknotens integriert, um die Betriebszustände oder -modi über einen Simulationszeitraum von einer Woche anzupassen. Während dieser Zeit hat der Sensorknoten 6 Stunden zusätzlich im Normalbetrieb gearbeitet. Dies trug dazu bei, eine effektive Nutzung der verfügbaren Energie um ca. 3,6% besser zu erfüllen als das genaueste traditionelle Netz. Dadurch wird eine längere Lebensdauer und Zuverlässigkeit des Sensorknotens erreicht. / Wireless Sensor Network (WSN) is a technology that measures an environmental or physical parameters in order to use them by decision makers with a possibility of remote monitoring. Normally, sensor nodes that compose these networks are powered by batteries which are no longer feasible, especially when they used as fixed and standalone power source. This is due to the costly replacement and maintenance. Ambient energy harvesting systems can be used with these nodes to support the batteries and to prolong the lifetime of these networks. Due to the high power density of solar energy in comparison with different environmental energies, solar cells are the most utilized harvesting systems. Although that, the fluctuating and intermittent nature of solar energy causes a real challenge against fulfilling a functional and reliable sensor node. In order to operate the sensor node effectively, its energy consumption should be well managed. One interesting approach for this purpose is to control the future node’s activities according to the prospective energy available. This requires performing a prior prediction of the harvestable solar energy for the upcoming operation periods including the sun’s free times. A few prediction algorithms have been created using stochastic and statistical principles as well as artificial intelligence (AI) methods. A considerable prediction error of 5-70% is realized by these algorithms affecting the reliable operation of the nodes. For example, the stochastic ones use a discrete energy states which are mostly do not fit the actual readings. The statistical methods use a weighting factors for the previous registered readings. Thus, they are convenient only to predict energy profiles under consistent weather conditions. AI methods require large observations to be used in the training process which increase the memory space needed. Accordingly, the performance concerning the prediction accuracy of these algorithms is not sufficient. In this thesis, a prediction algorithm using a neural network has been proposed and implemented in a microcontroller for managing energy consumption of solar cell driven sensor nodes. The utilized neural network has been developed using a combination of meteorological and statistical input parameters. This is to meet a required design criteria for the sensor nodes and to fulfill a performance exceeds in its accuracy the performance of aforementioned traditional algorithms. The prediction accuracy represented by the correlation coefficient has been registered for the developed neural network to be 0.992, which increases the most accurate traditional network which has a value 0.963. The developed neural network has been embedded into a sensor node prototype to adjust the operating states or modes over a simulation period of one week. During this period, the sensor node has worked 6 hours more towards normal operation mode. This in its role helped to fulfill an effective use of available energy approximately 3.6% better than the most accurate traditional network. Thus, longer lifetime and more reliable sensor node.
86

Compact Multi-Coil Inductive Power Transfer System with a Dynamic Receiver Position Estimation

Bouattour, Ghada 07 April 2022 (has links)
Inductive power transfer (IPT) systems with tolerance to the lateral misalignment are advantageous for enhancing the transmitted power, usability and security of the system. In this thesis, a misalignment tolerant multi-coil design is proposed to supply stationary and dynamic battery-free wireless devices. A compact architecture composed of individually switchable 3 layers of printed coils arranged with overlap for excellent surface coverage. A hybrid architecture based on three compact AC supply modules reduces the supply circuit complexity on the sending Seite 2 von 4side. It detects the position of the receiver coil quickly, controls the activation of the transmitting coils and estimates the next receiver position. The proposed architecture reduces the circuit footprint by a factor of 62% compared to common architectures. A transmitter coil activation strategy is proposed based on the detection of the transmitting coils voltage and communication between sending side and receiving side to detect devices to supply nature and position and to differentiate them from other conductive objects in the sending area to the supplying security. The experimental results prove that the proposed architecture has a good performance for different trajectories when the device speed does not exceed 15 mm/s. Besides, the maximum detection time for the initial device position is about 1.6 s. The maximal time interval to check the transmitter coils is around 0.7 s.:1. INTRODUCTION 2. THEORETICAL BACKGROUND 3. STATE OF THE ART OF MULTI-COIL IPT SYSTEMS 4. NOVEL DESIGN OF A MULTI-COIL IPT SYSTEM 5. MULTI-COIL ACTIVATION PROCEDURE 6. EXPERIMENTAL INVESTIGATIONS 7. CONCLUSION AND OUTLOOK / Induktive Energieübertragungssysteme (IPT) mit Toleranz gegenüber seitlichem Versatz sind vorteilhaft, um die übertragene Leistung, die Nutzbarkeit und die Sicherheit des Systems zu verbessern. In dieser Arbeit wird ein versatztolerantes Multispulen-Design vorgeschlagen, um stationäre und dynamische batterielose drahtlose Geräte zu versorgen. Die kompakte Architektur besteht aus 3 einzeln schaltbaren Schichten gedruckter Spulen, die überlappend angeordnet sind, um eine hervorragende Oberflächenabdeckung zu gewährleisten. Eine hybride Architektur, die auf drei kompakten AC-Versorgungsmodulen basiert, reduziert die Komplexität der Versorgungsschaltung auf der Senderseite. Sie erkennt die Position der Empfängerspule schnell, steuert die Aktivierung der Sendespulen und schätzt die nächste Empfängerposition. Die vorgeschlagene Architektur reduziert den Platzbedarf der Schaltung um einen Faktor von 62 % im Vergleich zu herkömmlichen Architekturen. Es wird eine Aktivierungsstrategie für die Sendespulen vorgeschlagen, die auf der Erkennung der Spannung der Sendespulen und der Kommunikation zwischen Sende- und Empfangsseite basiert, um die Art und Position der zu versorgenden Geräte zu erkennen und sie von anderen leitfähigen Objekten im Sendebereich zu unterscheiden. Die experimentellen Ergebnisse zeigen, dass die vorgeschlagene Architektur eine gute Leistung für verschiedene Trajektorien hat, wenn die Geschwindigkeit der Geräte 15 mm/s nicht überschreitet. Außerdem beträgt die maximale Erkennungszeit für die anfängliche Geräteposition etwa 1,6 s. Das maximale Zeitintervall für die Überprüfung der Senderspulen beträgt etwa 0,7 s.:1. INTRODUCTION 2. THEORETICAL BACKGROUND 3. STATE OF THE ART OF MULTI-COIL IPT SYSTEMS 4. NOVEL DESIGN OF A MULTI-COIL IPT SYSTEM 5. MULTI-COIL ACTIVATION PROCEDURE 6. EXPERIMENTAL INVESTIGATIONS 7. CONCLUSION AND OUTLOOK
87

Development and Evaluation of a Modular Multi-Sensor System for Comprehensive Water Quality Analysis / Utveckling och Utvärdering av ett Modulärt Multisensor System för Omfattande Analys av Vattenkvalitet

Daryaweesh, Arghad, Daryaweesh, Dani January 2024 (has links)
This study addresses the challenges faced by industries requiring precise water quality monitoring by developing and evaluating a modular multi-sensor system. Existing solutions often lack scalability and flexibility, necessitating multiple devices for comprehensive analysis. The methodology employed a recursive prototype development approach, integrating various hardware and software components, including microcontrollers and a user-friendly mobile application. The prototype facilitated real-time data acquisition and management through a dedicated server, supporting essential water quality parameters such as pH, temperature, and conductivity. Results indicate that the system significantly enhances measurement accuracy and operational efficiency. However, the implementation of a smart home connectivity standard was unsuccessful, highlighting the complexities associated with integrating new communication protocols. Despite this, the system offers a scalable, cost-effective solution for continuous water quality monitoring, presenting significant improvements over existing technologies in terms of flexibility, user engagement, and data reliability. / Denna studie behandlar de utmaningar som industrier står inför som kräver noggrann övervakning av vattenkvalitet genom att utveckla och utvärdera ett modulärt multisensorsystem. Befintliga lösningar saknar ofta skalbarhet och flexibilitet, vilket kräver flera enheter för omfattande analys. Metodiken använde en rekursiv prototyputvecklingsansats, som integrerade olika hårdvaru- och mjukvarukomponenter, inklusive mikrokontroller och en användarvänlig mobilapplikation. Prototypen underlättade insamling och hantering av realtidsdata genom en dedikerad server, som stödde viktiga vattenkvalitetsparametrar såsom pH, temperatur och konduktivitet. Resultaten indikerar att systemet avsevärt förbättrar mätnoggrannhet och operationell effektivitet. Dock var implementeringen av smarta hem-anslutningsstandard inte framgångsrik, vilket belyser komplexiteten med att integrera nya kommunikationsprotokoll. Trots detta erbjuder systemet en skalbar, kostnadseffektiv lösning för kontinuerlig övervakning av vattenkvalitet, med betydande förbättringar jämfört med befintliga teknologier när det gäller flexibilitet, användarengagemang och datareliabilitet.

Page generated in 0.0468 seconds