• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neuropatia sensorial periférica induzida pela cisplatina: estudo dos mecanismos de neurotoxicidade da cisplatina e do efeito protetor do éster fenetil do ácido cafeico (CAPE) em células PC12 / Peripheral sensory neuropathy induced by cisplatin: study of the mechanisms of neurotoxicity of cisplatin and the protective effect of caffeic acid phenethyl ester (CAPE) on PC12 cells

Ferreira, Rafaela Scalco 11 May 2018 (has links)
Cisplatina é um agente quimioterápico altamente eficaz utilizado no tratamento de vários tipos de câncer. No entanto, seu uso clínico é limitado por ser o mais neurotóxico entre os derivados de platina. A neuropatia sensorial periférica induzida pela cisplatina é caracterizada pela degeneração distal dos axônios podendo progredir para a degeneração dos corpos celulares e apoptose. O mecanismo de ação tóxica tem sido associado aos danos no DNA, mas a cisplatina também pode interferir no crescimento de neuritos. No entanto, o mecanismo neurotóxico ainda permanece incerto. Embora vários compostos tenham demonstrado efeito protetor contra a neurotoxicidade induzida pela cisplatina, nenhum tratamento efetivo foi desenvolvido. O éster fenetil do ácido cafeico (CAPE) é um composto fenólico extraído da própolis, cujo efeitos neuroprotetores tem sido atribuído às suas propriedades antioxidantes. Do contrário, poucos estudos avaliam o potencial neurotrófico do CAPE como uma possível fonte de proteção. Sendo assim, no presente estudo foram investigados os mecanismos pelos quais a cisplatina induz neurotoxicidade, bem como o possível efeito neuroprotetor do CAPE e os mecanismos envolvidos na neuroproteção. Os resultados demonstraram que os efeitos neurotóxicos da cisplatina foram induzidos por uma concentração não citotóxica (5 ?M), a qual foi capaz de inibir o crescimento de neuritos e reduzir a expressão das proteínas neuronais (GAP-43, sinapsina I e sinaptofisina) e do citoesqueleto (NF-200, ?-III-tubulina e F-actina) em células PC12 sem induzir dano mitocondrial, apoptose e estresse oxidativo. Neste estágio, a neurotoxicidade da cisplatina não foi mediada pelo NGF e nem pelos receptores trkA, sugerindo um mecanismo independente da via NGF/trkA. A diminuição da captação da glicose induzida pela cisplatina, pode estar associada à redução na expressão das proteínas relacionadas ao estado energético, sugerindo que a regulação negativa da AMPK ?, da fosfo-AMPK ? e da SIRT1 podem estar envolvidas no mecanismo de neurotoxicidade da cisplatina. A cisplatina também inibiu a captação do glutamato via EAAT2 de uma maneira não específica, sugerindo que outros processos podem ser modulados e participarem desta inibição. O CAPE atenuou os efeitos inibitórios da cisplatina sobre a diferenciação celular, sobre os marcadores da neuroplasticidade axonal (GAP-43, sinapsina I e sinaptofisina), sobre as proteínas do citoesqueleto (NF-200, ?-III-tubulina e F-actina) e também sobre os marcadores do perfil energético (AMPK ?, da fosfo- AMPK ? e da SIRT1). O CAPE também aumentou a viabilidade das células PC12 expostas à IC50 da cisplatina. O mecanismo neuroprotetor do CAPE é independente e não aditivo ao efeito do NGF, pode envolver a ativação dos receptores trkA, bem como das vias de sinalização neurotrófica MAPK/Erk e PI3K/Akt. Tais resultados sugerem a contribuição da neuroplasticidade no mecanismo de neuroproteção do CAPE contra a neurotoxicidade induzida pela cisplatina. / Cisplatin is a highly effective chemotherapeutic agent that is used in the treatment of several types of cancer. However, its clinical use is limited because it is the most neurotoxic among platinum compounds. Peripheral sensory neuropathy induced by cisplatin is characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect nerite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. Although many compounds have demonstrated protective effect against the neurotoxicity induced by cisplatin, no effective treatment has been developed. Caffeic acid phenethyl ester (CAPE) is a propolis component with neuroprotective effects mainly attribute to antioxidant properties. On the other hand, there are few studies addressing the neurotrophic potential of CAPE as a possible source of protection. Thus, the present study investigated the mechanism by which cisplatin induces neurotoxicity, as well as the possible neuroprotective effect of CAPE and the mechanisms involved in neuroprotection. According to the results, the neurotoxic effects of cisplatin were induced by a non-cytotoxic concentration (5 ?M), which was able to inhibit the neurite outgrowth and reduce the expression of neuronal proteins (GAP-43, synapsin I and synaptophysin), and cystoskeleton (NF-200, ?-III-tubulin and F-actin) in PC12 cells, without inducing mitochondrial damage, apoptosis and oxidative stress. At this stage, the neurotoxicity of cisplatin was not mediated by NGF or trkA receptors, suggesting a NGF/trkA independent mechanism. Decreased cisplatin-induced glucose uptake might be associated with reduced expression of energy-related proteins, suggesting that downregulation of AMPK ?, phospho-AMPK ? and SIRT1 expression might be involved in the neurotoxicity mechanism of cisplatin. Cisplatin also inhibited glutamate uptake via EAAT2 in a non-specific manner, suggesting that other processes can be involved in this modulation, resulting in uptake inhibition. CAPE attenuated the inhibitory effects of cisplatin on cell differentiation, on axonal neuroplasticity markers (GAP-43, synapsin I and synaptophysin), on cystoskeleton proteins (NF-200, ?-III-tubulin and F-actin) and also on energy profile markers (AMPK ?, phospho-AMPK ? and SIRT1). CAPE also increased the viability of PC12 cells exposed to IC50 of cisplatin. The neuroprotective mechanism of CAPE is not dependent on NGF nor is it additive to the effect of NGF, but might involve the activation of trkA receptors, as well as the neurotrophic signaling MAPK/Erk and PI3K/Akt pathways. These results suggest the contribution of neuroplasticity in the neuroprotection mechanism of CAPE against cisplatin-induced neurotoxicity.
2

Caractérisation fonctionnelle chez le poisson zèbre de l'isoforme protéique WNK1/HSN2 mutée dans la neuropathie héréditaire sensitive et autonome de type 2

Bercier, Valérie 11 1900 (has links)
La neuropathie humaine sensitive et autonome de type 2 (NHSA 2) est une pathologie héréditaire rare caractérisée par une apparition précoce des symptômes et une absence d’affectation motrice. Cette pathologie entraîne la perte de perception de la douleur, de la chaleur et du froid ainsi que de la pression (toucher) dans les membres supérieurs et inférieurs et est due à des mutations autosomales récessives confinées à l’exon HSN2 de la protéine kinase à sérine/thréonine WNK1 (with-no-lysine protein kinase 1). Cet exon spécifique permettrait de conférer une spécificité au système nerveux à l’isoforme protéique WNK1/HSN2. La kinase WNK1 est étudiée en détails, en particulier au niveau du rein, mais son rôle au sein du système nerveux demeure inconnu. Considérant le début précoce de la neuropathie et le manque d’innervation sensorielle révélé par des biopsies chez les patients NHSA2, notre hypothèse de recherche est que les mutations tronquantes menant à la NHSA de type 2 causent une perte de fonction de l’isoforme WNK1/HSN2 spécifique au système nerveux entraînant un défaut dans le développement du système nerveux sensoriel périphérique. Chez l’embryon du poisson zèbre, WNK1/HSN2 est exprimé au niveau des neuromastes de la ligne latérale postérieure, un système mécanosensoriel périphérique. Nous avons obtenu des embryons knockdown pour WNK1/HSN2 par usage d’oligonucléotides morpholino antisens (AMO). Nos trois approches AMO ont révélé des embryons présentant des défauts d’établissement au niveau de la ligne latérale postérieure. Afin de déterminer la voie pathogène impliquant l’isoforme WNK1/HSN2, nous nous sommes intéressés à l’interaction rapportée entre la kinase WNK1 et le co-transporteur neuronal KCC2. Ce dernier est une cible de phosphorylation de WNK1 et son rôle dans la promotion de la neurogenèse est bien connu. Nous avons détecté l’expression de KCC2 au niveau de neuromastes de la ligne latérale postérieure et observé une expression accrue de KCC2 chez les embryons knockdown pour WNK1/HSN2 à l’aide de RT-PCR semi-quantitative. De plus, une sur-expression d’ARN humain de KCC2 chez des embryons a produit des défauts dans la ligne latérale postérieure, phénocopiant le knockdown de WNK1/HSN2. Ces résultats furent validés par un double knockdown, produisant des embryons n’exprimant ni KCC2, ni WNK1/HSN2, dont le phénotype fut atténué. Ces résultats nous mènent à suggérer une voie de signalisation où WNK1/HSN2 est en amont de KCC2, régulant son activation, et possiblement son expression. Nous proposons donc que la perte de fonction de l’isoforme spécifique cause un débalancement dans les niveaux de KCC2 activée, menant à une prolifération et une différenciation réduites des progéniteurs neuronaux du système nerveux périphérique. Les défauts associés à la NHSA de type 2 seraient donc de nature développementale et non neurodégénérative. / Human sensory and autonomic neuropathy type 2 (HSNA2) is a rare human hereditary pathology characterized by an early onset severe sensory loss (for all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon HSN2 of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase; the specific exon confers nervous system specificity to target isoform WNK1/HSN2. While this kinase is widely studied in the kidneys, little is known about its role in the nervous system. Due to its role in HSAN type 2, we hypothesized that the truncating mutations present in the HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. In order to investigate the mechanisms by which the lack of the WNK1/HSN2 isoform acts to cause HSAN type 2, we examined its expression pattern in our zebrafish model and observed strong expression in neuromasts of the peripheral sensory lateral line system. We then knocked down the HSN2 exon in zebrafish embryos using antisense morpholino oligonucleotides. Our three approaches to knockdown the WNK1/HSN2 isoform led to embryos with a defective lateral line. In order to establish a pathogenic pathway involving the WNK1/HSN2 isoform, we investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride co-transporter KCC2. This transporter is a target of WNK1 phosphorylation and also has a known role in promoting neurogenesis. We have also showed its expression in mature neuromasts of the posterior lateral line, and observed an increased expression of KCC2 in WNK1/HSN2 knockdown embryos by semi-quantitative RT-PCR, lending credence to our interaction hypothesis. Furthermore, overexpression of human KCC2 RNA in embryos led to an impaired mechanosensory lateral line system, phenocopying the WNK1/HSN2 knockdown. We then validated these results by obtaining double knockdown embryos, both for WNK1/HSN2 and KCC2, which alleviated the lateral line defect phenotype. These results led us to suggest a pathway in which WNK1/HSN2 is upstream of the KCC2 co-transporter. WNK1 is believed to regulate the level of activation, and possibly level of expression, of KCC2 and we therefore hypothesize that the loss-of-function of the specific isoform causes an imbalance in the levels of activated KCC2. This would then lead to decreased progenitor proliferation and hindered differentiation of neurons, causing the defects associated with HSAN type 2.
3

Caractérisation fonctionnelle chez le poisson zèbre de l'isoforme protéique WNK1/HSN2 mutée dans la neuropathie héréditaire sensitive et autonome de type 2

Bercier, Valérie 11 1900 (has links)
La neuropathie humaine sensitive et autonome de type 2 (NHSA 2) est une pathologie héréditaire rare caractérisée par une apparition précoce des symptômes et une absence d’affectation motrice. Cette pathologie entraîne la perte de perception de la douleur, de la chaleur et du froid ainsi que de la pression (toucher) dans les membres supérieurs et inférieurs et est due à des mutations autosomales récessives confinées à l’exon HSN2 de la protéine kinase à sérine/thréonine WNK1 (with-no-lysine protein kinase 1). Cet exon spécifique permettrait de conférer une spécificité au système nerveux à l’isoforme protéique WNK1/HSN2. La kinase WNK1 est étudiée en détails, en particulier au niveau du rein, mais son rôle au sein du système nerveux demeure inconnu. Considérant le début précoce de la neuropathie et le manque d’innervation sensorielle révélé par des biopsies chez les patients NHSA2, notre hypothèse de recherche est que les mutations tronquantes menant à la NHSA de type 2 causent une perte de fonction de l’isoforme WNK1/HSN2 spécifique au système nerveux entraînant un défaut dans le développement du système nerveux sensoriel périphérique. Chez l’embryon du poisson zèbre, WNK1/HSN2 est exprimé au niveau des neuromastes de la ligne latérale postérieure, un système mécanosensoriel périphérique. Nous avons obtenu des embryons knockdown pour WNK1/HSN2 par usage d’oligonucléotides morpholino antisens (AMO). Nos trois approches AMO ont révélé des embryons présentant des défauts d’établissement au niveau de la ligne latérale postérieure. Afin de déterminer la voie pathogène impliquant l’isoforme WNK1/HSN2, nous nous sommes intéressés à l’interaction rapportée entre la kinase WNK1 et le co-transporteur neuronal KCC2. Ce dernier est une cible de phosphorylation de WNK1 et son rôle dans la promotion de la neurogenèse est bien connu. Nous avons détecté l’expression de KCC2 au niveau de neuromastes de la ligne latérale postérieure et observé une expression accrue de KCC2 chez les embryons knockdown pour WNK1/HSN2 à l’aide de RT-PCR semi-quantitative. De plus, une sur-expression d’ARN humain de KCC2 chez des embryons a produit des défauts dans la ligne latérale postérieure, phénocopiant le knockdown de WNK1/HSN2. Ces résultats furent validés par un double knockdown, produisant des embryons n’exprimant ni KCC2, ni WNK1/HSN2, dont le phénotype fut atténué. Ces résultats nous mènent à suggérer une voie de signalisation où WNK1/HSN2 est en amont de KCC2, régulant son activation, et possiblement son expression. Nous proposons donc que la perte de fonction de l’isoforme spécifique cause un débalancement dans les niveaux de KCC2 activée, menant à une prolifération et une différenciation réduites des progéniteurs neuronaux du système nerveux périphérique. Les défauts associés à la NHSA de type 2 seraient donc de nature développementale et non neurodégénérative. / Human sensory and autonomic neuropathy type 2 (HSNA2) is a rare human hereditary pathology characterized by an early onset severe sensory loss (for all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon HSN2 of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase; the specific exon confers nervous system specificity to target isoform WNK1/HSN2. While this kinase is widely studied in the kidneys, little is known about its role in the nervous system. Due to its role in HSAN type 2, we hypothesized that the truncating mutations present in the HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. In order to investigate the mechanisms by which the lack of the WNK1/HSN2 isoform acts to cause HSAN type 2, we examined its expression pattern in our zebrafish model and observed strong expression in neuromasts of the peripheral sensory lateral line system. We then knocked down the HSN2 exon in zebrafish embryos using antisense morpholino oligonucleotides. Our three approaches to knockdown the WNK1/HSN2 isoform led to embryos with a defective lateral line. In order to establish a pathogenic pathway involving the WNK1/HSN2 isoform, we investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride co-transporter KCC2. This transporter is a target of WNK1 phosphorylation and also has a known role in promoting neurogenesis. We have also showed its expression in mature neuromasts of the posterior lateral line, and observed an increased expression of KCC2 in WNK1/HSN2 knockdown embryos by semi-quantitative RT-PCR, lending credence to our interaction hypothesis. Furthermore, overexpression of human KCC2 RNA in embryos led to an impaired mechanosensory lateral line system, phenocopying the WNK1/HSN2 knockdown. We then validated these results by obtaining double knockdown embryos, both for WNK1/HSN2 and KCC2, which alleviated the lateral line defect phenotype. These results led us to suggest a pathway in which WNK1/HSN2 is upstream of the KCC2 co-transporter. WNK1 is believed to regulate the level of activation, and possibly level of expression, of KCC2 and we therefore hypothesize that the loss-of-function of the specific isoform causes an imbalance in the levels of activated KCC2. This would then lead to decreased progenitor proliferation and hindered differentiation of neurons, causing the defects associated with HSAN type 2.
4

Mutation Spectrum in the Large Gtpase Dynamin 2, and Genotype-Phenotype Correlation in Autosomal Dominant Centronuclear Myopathy

Böhm, Johann, Biancalana, Valerie, DeChene, Elizabeth T., Bitoun, Marc, Pierson, Christopher R., Schaefer, Elise, Karasoy, Hatice, Dempsey, Melissa A., Klein, Fabrice, Dondaine, Nicolas, Kretz, Christine, Haumesser, Nicolas, Poirson, Claire, Toussaint, Anne, Greenleaf, Rebecca S., Barger, Melissa A., Mahoney, Lane J., Kang, Peter B., Zanoteli, Edmar, Vissing, John, Witting, Nanna, Echaniz-Laguna, Andoni, Wallgren-Pettersson, Carina, Dowling, James, Merlini, Luciano, Oldfors, Anders, Ousager, Lilian Bomme, Melki, Judith 01 June 2012 (has links)
Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT.
5

Caractéristiques cardiométaboliques d’une souris inactivée pour le cotransporteur potassium-chlorure de type 3

Garneau, Alexandre 11 1900 (has links)
La polyneuropathie sensitivomotrice héréditaire (PNSMH) est une maladie rare qui entraîne un ralentissement du développement moteur et mental, une déficience sensitivomotrice et des syndromes neuropsychiatriques, et qui s’accompagne souvent d’une agénésie du corps calleux. Par ailleurs, plusieurs évaluations rapportent une petite stature ou une masse corporelle anormalement basse chez les patients. La PNSMH est causée par des mutations perte de fonction du cotransporteur K⁺-Cl⁻ de type 3 (KCC3). Des évaluations cliniques détaillées et la caractérisation de souris inactivées pour Kcc3 (Kcc3ᴷᴼ) ont permis d’établir qu’un défaut d’export K⁺-Cl⁻ cause les atteintes neurologiques anatomiques et fonctionnelles dans la maladie. Chez les souris Kcc3ᴷᴼ, des manifestations extraneurologiques ont également été relevées : masse corporelle réduite, pression artérielle (PA) élevée, polydipsie et polyurie. Puisque la physiopathologie des désordres extraneurologiques découlant de la perte de fonction de KCC3 reste incomplètement décrite, mes travaux avaient pour objectif d’en comprendre les mécanismes sous-jacents en utilisant un modèle Kcc3ᴷᴼ. Une caractérisation initiale de notre lignée de souris Kcc3ᴷᴼ constitutive et systémique a montré des anomalies vasculaires et cardiaques accompagnant une élévation de PA diastolique. Cette lignée affichait également une polydipsie et une polyurie isoosmotique, de même qu’une réduction de masse corporelle et d’adiposité sans réduction d’apport alimentaire. Une caractérisation métabolique détaillée de notre modèle a ensuite permis de révéler des réductions de masse grasse et de masse maigre. Cette minceur résulte sûrement en partie des augmentations d’activité locomotrice et de dépense énergétique mesurées. Une nette amélioration de la tolérance au glucose a aussi été trouvée, ainsi que des concentrations réduites de triacylglycérols plasmatiques. Enfin, nous avons noté que notre modèle est résistant à l’obésité induite par une diète hyperlipidique et affiche une élévation concomitante de l’expression d’enzymes lipogéniques et lipolytiques dans le gras viscéral, engendrant potentiellement une dissipation calorique. En revisitant la fonction cardiovasculaire dans notre modèle par des méthodes de pointe, nous n’avons pas observé de changement de PA ni de différence de réactivité artériolaire en conditions basales, mais nous avons noté une élévation de distensibilité artériolaire passive. Chez notre modèle, nous n’avons pas non plus remarqué de sensibilité particulière de la PA au sel alimentaire, mais une excrétion urinaire fortement accrue de solutés sous diète hypersodée ainsi qu’une préférence marquée pour le sel. Ces observations sont compatibles avec un défaut de réabsorption hydrosodée par le rein pouvant d’ailleurs prévenir les élévations de PA. En somme, nos travaux ont permis de mieux comprendre les atteintes cardiométaboliques qui accompagnent le tableau neurologique d’un modèle murin de PNSMH. Nous avons notamment relevé des bénéfices inattendus dans le métabolisme glucidique et lipidique suivant l’inactivation de Kcc3. Nous soupçonnons également que l’absence de KCC3 dans le rein engendre une fuite ionique urinaire s’accentuant sous diète hypersodée et pouvant influencer la PA en limitant l’expansion volémique. Nos observations d’anomalies pléiotropiques liées à l’inactivation de Kcc3 font de ce gène une nouvelle cible pharmacologique potentielle et justifient la nécessité d’étudier l’anatomophysiologie cardiométabolique des patients atteints de PNSMH de façon plus approfondie. / Hereditary motor and sensory neuropathy (HMSN) is a rare disease that leads to delayed motor and mental development, loss of sensory and motor function and neuropsychiatric syndromes, and that is often accompanied by partial or complete agenesis of the corpus callosum. Additionally, several cases of short stature or low body weight have been reported in patients. HMSN is caused by loss-of-function mutations in K⁺-Cl⁻ cotransporter type 3 (KCC3). Detailed clinical reports and characterizations of mice inactivated for Kcc3 (Kcc3ᴷᴼ) have allowed to establish that defective K⁺-Cl⁻ export causes the anatomical and functional neurologic impairments in the disease. In Kcc3ᴷᴼ mice, extra-neurological abnormalities have also been noted: lower body weight, high blood pressure (BP), polydipsia and polyuria. Because the pathophysiology of extra-neurological traits arising from KCC3 loss of function remains incompletely described, my work aimed at understanding the mechanisms at play using a Kcc3ᴷᴼ model. An initial characterization of a constitutive and systemic Kcc3ᴷᴼ mouse line showed vascular and cardiac abnormalities along with a rise in diastolic BP. This model also showed polydipsia and iso-osmolar polyuria along with reduced body weight and adiposity but no decrease in food intake. A detailed metabolic characterization of our model further revealed reductions in fat and lean body masses. This leanness results certainly in part from increased locomotor activity and energy expenditure as measured. A marked improvement in glucose tolerance was also found in addition to lower plasmatic triglyceride concentrations. Lastly, we also demonstrated that our model is resistant to high-fat-diet-induced obesity and shows concomitant increase in expression of both lipogenic and lipolytic enzymes in visceral fat, thereby potentially generating caloric dissipation. When revisiting the cardiovascular function of our model with cutting-edge methods, we measured normal BP and arteriolar reactivity in baseline conditions. However, we noted an increase in passive arteriolar distensibility. In our model, we did not notice sensitivity of BP to dietary salt but found a marked increase in urinary solute excretion under high-salt diet and a strong preference for salt. These observations are consistent with a defect in hydromineral reabsorption by the nephron that may prevent BP from rising. In short, our work allowed to better understand the cardiometabolic characteristics that accompany the neurologic portrait of an HMSN mouse model. In particular, we noted unexpected benefits in carbohydrate and lipid metabolism upon Kcc3 inactivation. We also suspect that KCC3 ablation in the kidney leads to urinary hydromineral wasting that can be more salient under dietary salt loading and can influence BP by blunting extracellular volume expansion. The pleiotropic abnormalities arising from Kcc3 inactivation identify this gene as a new potential pharmacological target and argue for improving efforts at describing the cardiometabolic features of patients with HMSN.

Page generated in 0.0574 seconds