• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 2
  • Tagged with
  • 19
  • 19
  • 14
  • 13
  • 10
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] LOGIC PROOFS COMPACTATION / [pt] COMPACTAÇÃO DE PROVAS LÓGICAS

VASTON GONCALVES DA COSTA 01 June 2007 (has links)
[pt] É um fato conhecido que provas clássicas podem ser demasiadamente grandes. Estudos em teoria da prova descobriram diferenças exponenciais entre provas normais (ou provas livres do corte) e suas respectivas provas não normais. Por outro lado, provadores automáticos de teorema usualmente se baseiam na construção de provas normais, livres de corte ou provas de corte atômico, pois tais procedimento envolvem menos escolhas. Provas de algumas tautologias são conhecidamente grandes quanto realizadas sem a regra do corte e curtas quando a utilizam. Queremos com este trabalho apresentar procedimentos para reduzir o tamanho de provas proposicionais. Neste sentido, apresentamos dois métodos. O primeiro, denominado método vertical, faz uso de axiomas de extensão e alguns casos é possível uma redução considerável no tamanho da prova. Apresentamos um procedimento que gera tais axiomas de extensão. O segundo, denominado método horizontal, adiciona fórmulas máximas por meio de unificação via substituição de variáveis proposicionais. Também apresentamos um método que gera tal unificação durante o processo de construção da prova. O primeiro método é aplicado a dedução natural enquanto o segundo à Dedução Natural e Cálculo de Seqüentes. As provas produzidas correspondem de certo modo a provas não normais (com a regra do corte). / [en] It is well-known that the size of propositional classical proofs can be huge. Proof theoretical studies discovered exponential gaps between normal or cut-free proofs and their respective non-normal proofs. The task of automatic theorem proving is, on the other hand, usually based on the construction of normal, cut-free or only-atomic-cuts proofs, since this procedure produces less alternative choices. There are familiar tautologies such that the cut-free proof is huge while the non-cut-free is small. The aim of this work is to reduce the weight of proposicional deductions. In this sense we present two methods. The fi first, namely vertical method, uses the extension axioms. We present a method that generates a such extension axiom. The second, namely horizontal method, adds suitable (propositional) unifi fications modulo variable substitutions.We also present a method that generates a such unifi fication during the proving process. The proofs produced correspond in a certain way to non normal proofs (non cut-free proofs).
12

Intesection types and resource control in the intuitionistic sequent lambda calculus / Типови са пресеком и контрола ресурса у интуиционистичком секвентном ламбда рачуну / Tipovi sa presekom i kontrola resursa u intuicionističkom sekventnom lambda računu

Ivetić Jelena 09 October 2013 (has links)
<p>This thesis studies computational interpretations of the intuitionistic sequent<br />calculus with implicit and explicit structural rules, with focus on the systems<br />with intersection types. The contributions of the thesis are grouped into three<br />parts. In the first part intersection types are introduced into the lambda<br />Gentzen calculus. The second part presents an extension of the lambda<br />Gentzen calculus to a term calculus with resource control, i.e. with explicit<br />operators for contraction and weakening, and apropriate intersection type<br />assignment system which characterises strong normalisation in the proposed<br />calculus. In the third part both previously studied calculi are integrated into<br />one framework by introducing the notion of the resource control cube.</p> / <p>Ова дисертација се бави рачунским интерпретацијама<br />интуиционистичког секвентног рачуна са имплицитним и експлицитним<br />структурним правилима, са фокусом на типске системе са пресеком.<br />Оригинални резултати тезе су груписани у три целине. У првом делу су<br />типови са пресеком уведени у lambda Gentzen рачун. Други део<br />представља проширење lambda Gentzen рачуна на формални рачун са<br />контролом ресурса, тј. са експлицитним операторима контракције и<br />слабљења, као и одговарајући типски систем са пресеком који<br />карактерише јаку нормализацију у уведеном рачуну. У трећем делу оба<br />рачуна су интегрисана у заједнички оквир увођењем структуре resource<br />control cube.</p> / <p>Ova disertacija se bavi računskim interpretacijama<br />intuicionističkog sekventnog računa sa implicitnim i eksplicitnim<br />strukturnim pravilima, sa fokusom na tipske sisteme sa presekom.<br />Originalni rezultati teze su grupisani u tri celine. U prvom delu su<br />tipovi sa presekom uvedeni u lambda Gentzen račun. Drugi deo<br />predstavlja proširenje lambda Gentzen računa na formalni račun sa<br />kontrolom resursa, tj. sa eksplicitnim operatorima kontrakcije i<br />slabljenja, kao i odgovarajući tipski sistem sa presekom koji<br />karakteriše jaku normalizaciju u uvedenom računu. U trećem delu oba<br />računa su integrisana u zajednički okvir uvođenjem strukture resource<br />control cube.</p>
13

Įrodymų sistema koreliatyvių žinių logikai / Proof system for logic of correlated knowledge

Giedra, Haroldas 30 December 2014 (has links)
Automatinė įrodymų sistema koreliatyvių žinių logikai yra pristatoma disertacijoje. Sistemą sudaro sekvencinis skaičiavimas GS-LCK ir įrodymo paieškos procedūra GS-LCK-PROC. Sekvencinis skaičiavimas yra pagrįstas, pilnas ir tenkina taisyklių apverčiamumo, silpninimo, prastinimo ir pjūvio leistinumo savybes. Procedūra GS-LCK-PROC yra baigtinė ir leidžia patikrinti, ar sekvencija yra išvedama. Taip pat buvo įrodytas koreliatyvių žinių logikos išsprendžiamumas. Naudojant baigtinę procedūra GS-LCK-PROC, visų koreliatyvių žinių logikos formulių tapatus teisingumas gali būti patikrintas. / Automated proof system for logic of correlated knowledge is presented in the dissertation. The system consists of the sequent calculus GS-LCK and the proof search procedure GS-LCK-PROC. Sequent calculus is sound, complete and satisfy the properties of invertibility of rules, admissibility of weakening, contraction and cut. The procedure GS-LCK-PROC is terminating and allows to check if the sequent is provable. Also decidability of logic of correlated knowledge has been proved. Using the terminating procedure GS-LCK-PROC the validity of all formulas of logic of correlated knowledge can be checked.
14

[en] ON SOME RELATIONS BETWEEN NATURAL DEDUCTION AND SEQUENT CALCULUS / [pt] ALGUMAS RELAÇÕES ENTRE CÁLCULO DE SEQUENTES E DEDUÇÃO NATURAL

CECILIA REIS ENGLANDER LUSTOSA 19 March 2015 (has links)
[pt] Segerberg apresentou uma prova geral da completude para lógicas proposicionais. Para tal, um sistema de dedução foi definido de forma que suas regras sejam regras para um operador booleano arbitrário para uma dada lógica proposicional. Cada regra desse sistema corresponde a uma linha na tabela de verdade desse operador. Na primeira parte desse trabalho, mostramos uma extensão da ideia de Segerberg para lógicas proposicionais finito-valoradas e para lógicas não-determinísticas. Mantemos a ideia de definir um sistema de dedução cujas regras correspondam a linhas de tabelas verdade, mas ao invés de termos um tipo de regra para cada valor de verdade da lógica correspondente, usamos uma representação bivalente que usa a técnica de fórmulas separadoras definidas por Carlos Caleiro e João Marcos. O sistema definido possui tantas regras que pode ser difícil trabalhar com elas. Acreditamos que um sistema de cálculo de sequentes definido de forma análoga poderia ser mais intuitivo. Motivados por essa observação, a segunda parte dessa tese é dedicada à definição de uma tradução entre cálculo de sequentes e dedução natural, onde procuramos definir uma bijeção melhor do que as já existentes. / [en] Segerberg presented a general completeness proof for propositional logics. For this purpose, a Natural Deduction system was defined in a way that its rules were rules for an arbitrary boolean operator in a given propositional logic. Each of those rules corresponds to a row on the operator s truth-table. In the first part of this thesis we extend Segerbergs idea to finite-valued propositional logic and to non-deterministic logic. We maintain the idea of defining a deductive system whose rules correspond to rows of truth-tables, but instead of having n types of rules (one for each truth-value), we use a bivalent representation that makes use of the technique of separating formulas as defined by Carlos Caleiro and João Marcos. The system defined has so many rules it might be laborious to work with it. We believe that a sequent calculus system defined in a similar way would be more intuitive. Motivated by this observation, in the second part of this thesis we work out translations between Sequent Calculus and Natural Deduction, searching for a better bijective relationship than those already existing.
15

A Natural Interpretation of Classical Proofs

Brage, Jens January 2006 (has links)
<p>In this thesis we use the syntactic-semantic method of constructive type theory to give meaning to classical logic, in particular Gentzen's LK.</p><p>We interpret a derivation of a classical sequent as a derivation of a contradiction from the assumptions that the antecedent formulas are true and that the succedent formulas are false, where the concepts of truth and falsity are taken to conform to the corresponding constructive concepts, using function types to encode falsity. This representation brings LK to a manageable form that allows us to split the succedent rules into parts. In this way, every succedent rule gives rise to a natural deduction style introduction rule. These introduction rules, taken together with the antecedent rules adapted to natural deduction, yield a natural deduction calculus whose subsequent interpretation in constructive type theory gives meaning to classical logic.</p><p>The Gentzen-Prawitz inversion principle holds for the introduction and elimination rules of the natural deduction calculus and allows for a corresponding notion of convertibility. We take the introduction rules to determine the meanings of the logical constants of classical logic and use the induced type-theoretic elimination rules to interpret the elimination rules of the natural deduction calculus. This produces an interpretation injective with respect to convertibility, contrary to an analogous translation into intuitionistic predicate logic.</p><p>From the interpretation in constructive type theory and the interpretation of cut by explicit substitution, we derive a full precision contraction relation for a natural deduction version of LK. We use a term notation to formalize the contraction relation and the corresponding cut-elimination procedure.</p><p>The interpretation can be read as a Brouwer-Heyting-Kolmogorov (BHK) semantics that justifies classical logic. The BHK semantics utilizes a notion of classical proof and a corresponding notion of classical truth akin to Kolmogorov's notion of pseudotruth. We also consider a second BHK semantics, more closely connected with Kolmogorov's double-negation translation.</p><p>The first interpretation reinterprets the consequence relation while keeping the constructive interpretation of truth, whereas the second interpretation reinterprets the notion of truth while keeping the constructive interpretation of the consequence relation. The first and second interpretations act on derivations in much the same way as Plotkin's call-by-value and call-by-name continuation-passing-style translations, respectively.</p><p>We conclude that classical logic can be given a constructive semantics by laying down introduction rules for the classical logical constants. This semantics constitutes a proof interpretation of classical logic.</p>
16

A Natural Interpretation of Classical Proofs

Brage, Jens January 2006 (has links)
In this thesis we use the syntactic-semantic method of constructive type theory to give meaning to classical logic, in particular Gentzen's LK. We interpret a derivation of a classical sequent as a derivation of a contradiction from the assumptions that the antecedent formulas are true and that the succedent formulas are false, where the concepts of truth and falsity are taken to conform to the corresponding constructive concepts, using function types to encode falsity. This representation brings LK to a manageable form that allows us to split the succedent rules into parts. In this way, every succedent rule gives rise to a natural deduction style introduction rule. These introduction rules, taken together with the antecedent rules adapted to natural deduction, yield a natural deduction calculus whose subsequent interpretation in constructive type theory gives meaning to classical logic. The Gentzen-Prawitz inversion principle holds for the introduction and elimination rules of the natural deduction calculus and allows for a corresponding notion of convertibility. We take the introduction rules to determine the meanings of the logical constants of classical logic and use the induced type-theoretic elimination rules to interpret the elimination rules of the natural deduction calculus. This produces an interpretation injective with respect to convertibility, contrary to an analogous translation into intuitionistic predicate logic. From the interpretation in constructive type theory and the interpretation of cut by explicit substitution, we derive a full precision contraction relation for a natural deduction version of LK. We use a term notation to formalize the contraction relation and the corresponding cut-elimination procedure. The interpretation can be read as a Brouwer-Heyting-Kolmogorov (BHK) semantics that justifies classical logic. The BHK semantics utilizes a notion of classical proof and a corresponding notion of classical truth akin to Kolmogorov's notion of pseudotruth. We also consider a second BHK semantics, more closely connected with Kolmogorov's double-negation translation. The first interpretation reinterprets the consequence relation while keeping the constructive interpretation of truth, whereas the second interpretation reinterprets the notion of truth while keeping the constructive interpretation of the consequence relation. The first and second interpretations act on derivations in much the same way as Plotkin's call-by-value and call-by-name continuation-passing-style translations, respectively. We conclude that classical logic can be given a constructive semantics by laying down introduction rules for the classical logical constants. This semantics constitutes a proof interpretation of classical logic.
17

Linear Logic and Noncommutativity in the Calculus of Structures

Straßburger, Lutz 11 August 2003 (has links) (PDF)
In this thesis I study several deductive systems for linear logic, its fragments, and some noncommutative extensions. All systems will be designed within the calculus of structures, which is a proof theoretical formalism for specifying logical systems, in the tradition of Hilbert's formalism, natural deduction, and the sequent calculus. Systems in the calculus of structures are based on two simple principles: deep inference and top-down symmetry. Together they have remarkable consequences for the properties of the logical systems. For example, for linear logic it is possible to design a deductive system, in which all rules are local. In particular, the contraction rule is reduced to an atomic version, and there is no global promotion rule. I will also show an extension of multiplicative exponential linear logic by a noncommutative, self-dual connective which is not representable in the sequent calculus. All systems enjoy the cut elimination property. Moreover, this can be proved independently from the sequent calculus via techniques that are based on the new top-down symmetry. Furthermore, for all systems, I will present several decomposition theorems which constitute a new type of normal form for derivations.
18

[pt] SISTEMAS DE PROVA E GERAÇÃO DE CONTRA EXEMPLO PARA LÓGICA PROPOSICIONAL MINIMAL IMPLICACIONAL / [en] SYSTEMS FOR PROVABILITY AND COUNTERMODEL GENERATION IN PROPOSITIONAL MINIMAL IMPLICATIONAL LOGIC

23 November 2021 (has links)
[pt] Esta tese apresenta um novo cálculo de sequente, correto e completo para a Lógica Proposicional Minimal Implicacional (M →). LMT → destina-se a ser usado para a busca de provas em M →, em uma abordagem bottom-up. A Terminação do cálculo é garantida por uma estratégia de aplicação de regras que força uma maneira ordenada no procedimento de busca de provas de tal forma que todas as combinações possíveis são exploradas. Para uma fórmula inicial α, as provas em LMT→ têm um limite superior de |α|.2 |α|+1+2·log2|α|, que juntamente com a estratégia do sistema, garantem a decidibilidade do mesmo. As regras do sistema são concebidas para lidar com a necessidade de repetição de hipóteses e a natureza de perda de contexto da regra → esquerda , evitando a ocorrência de loops e o uso de backtracking. Portanto, a busca de prova em LMT → é determinística, sempre executando buscas no sentido forward. LMT → tem a propriedade de permitir a extração de contramodelos a partir de buscas de prova que falharam (bicompletude), isto é, a árvore de tentativa de prova de um ramo totalmente expandido produz um modelo de Kripke que falsifica a fórmula inicial. A geração de contra-modelo (usando a semântica Kripke) é obtida como consequência da completude do sistema. LMT→ é implementado como um provador de teoremas interativo baseado no cálculo proposto aqui. Comparamos nosso cálculo com outros sistemas dedutivos conhecidos para M →, especialmente com Tableaux no estilo Fitting, um método que também tem a propriedade de ser bicompleto. Também propomos aqui uma tradução de LMT → para o verificador de prova Dedukti como uma forma de avaliar a correção da implementação que desenvolvemos, no que diz respeito à especificação do sistema, além de torná-lo mais fácil de comparar com outros sistemas existentes. / [en] This thesis presents a new sequent calculus called LMT→ that has the properties to be terminating, sound and complete for Propositional Implicational Minimal Logic (M →). LMT→ is aimed to be used for proof search in M →, in a bottom-up approach. Termination of the calculus is guaranteed by a strategy of rule application that forces an ordered way to search for proofs such that all possible combinations are stressed. For an initial formula α, proofs in LMT→ has an upper bound of |α|.2 |α|+1+2·log2|α|, which together with the system strategy ensure decidability. System rules are conceived to deal with the necessity of hypothesis repetition and the contextsplitting nature of → left, avoiding the occurrence of loops and the usage of backtracking. Therefore, LMT→ steers the proof search always in a forward, deterministic manner. LMT→ has the property to allow extractability of counter-models from failed proof searches (bicompleteness), i.e., the attempt proof tree of an expanded branch produces a Kripke model that falsifies the initial formula. Counter-model generation (using Kripke semantics) is achieved as a consequence of the completeness of the system. LMT→ is implemented as an interactive theorem prover based on the calculus proposed here. We compare our calculus with other known deductive systems for M →, especially with Fitting s Tableaux, a method that also has the bicompleteness property. We also proposed here a translation of LMT→ to the Dedukti proof checker as a way to evaluate the correctness of the implementation regarding the system specification and to make our system easier to compare to others.
19

Linear Logic and Noncommutativity in the Calculus of Structures

Straßburger, Lutz 24 July 2003 (has links)
In this thesis I study several deductive systems for linear logic, its fragments, and some noncommutative extensions. All systems will be designed within the calculus of structures, which is a proof theoretical formalism for specifying logical systems, in the tradition of Hilbert's formalism, natural deduction, and the sequent calculus. Systems in the calculus of structures are based on two simple principles: deep inference and top-down symmetry. Together they have remarkable consequences for the properties of the logical systems. For example, for linear logic it is possible to design a deductive system, in which all rules are local. In particular, the contraction rule is reduced to an atomic version, and there is no global promotion rule. I will also show an extension of multiplicative exponential linear logic by a noncommutative, self-dual connective which is not representable in the sequent calculus. All systems enjoy the cut elimination property. Moreover, this can be proved independently from the sequent calculus via techniques that are based on the new top-down symmetry. Furthermore, for all systems, I will present several decomposition theorems which constitute a new type of normal form for derivations.

Page generated in 0.0473 seconds