Spelling suggestions: "subject:"serra's"" "subject:"terre's""
1 |
Serre Weights: The Partially Ramified CaseSmith, Ryan Bixby January 2012 (has links)
We study the possible weights of an irreducible 2-dimensional modular mod p representation of Gal (F/F), where F is a totally real field in which p is allowed to ramify, and the representation is tamely ramified at primes above p. We describe a set of possible weights and completely determine the weights in some cases when e = 2, f = 2.
|
2 |
Lifting Galois Representations in a Conjecture of FigueiredoRosengren, Wayne Bennett 12 June 2008 (has links) (PDF)
In 1987, Jean-Pierre Serre gave a conjecture on the correspondence between degree 2 odd irreducible representations of the absolute Galois group of Q and modular forms. Letting M be an imaginary quadratic field, L.M. Figueiredo gave a related conjecture concerning degree 2 irreducible representations of the absolute Galois group of M and their correspondence to homology classes. He experimentally confirmed his conjecture for three representations arising from PSL(2,3)-polynomials, but only up to a sign because he did not lift them to SL(2,3)-polynomials. In this paper we compute explicit lifts and give further evidence that his conjecture is accurate.
|
3 |
A Lift of Cohomology Eigenclasses of Hecke OperatorsHansen, Brian Francis 24 May 2010 (has links) (PDF)
A considerable amount of evidence has shown that for every prime p &neq; N observed, a simultaneous eigenvector v_0 of Hecke operators T(l,i), i=1,2, in H^3(Γ_0(N),F(0,0,0)) has a “lift” v in H^3(Γ_0(N),F(p−1,0,0)) — i.e., a simultaneous eigenvector v of Hecke operators having the same system of eigenvalues that v_0 has. For each prime p>3 and N=11 and 17, we construct a vector v that is in the cohomology group H^3(Γ_0(N),F(p−1,0,0)). This is the first construction of an element of infinitely many different cohomology groups, other than modulo p reductions of characteristic zero objects. We proceed to show that v is an eigenvector of the Hecke operators T(2,1) and T(2,2) for p>3. Furthermore, we demonstrate that in many cases, v is a simultaneous eigenvector of all the Hecke operators.
|
4 |
Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and PollackDang, Vinh Xuan 20 June 2011 (has links) (PDF)
In the 1970s and 1980s, Jean-Pierre Serre formulated a conjecture connecting two-dimensional Galois representations and modular forms. The conjecture came to be known as Serre's modularity conjecture. It was recently proved by Khare and Wintenberger in 2008. Serre's conjecture has various important consequences in number theory. Most notably, it played a key role in the proof of Fermat's last theorem. A natural question is, what is the analogue of Serre's conjecture for higher dimensional Galois representations? In 2002, Ash, Doud and Pollack formulated a precise statement for a higher dimensional analogue of Serre's conjecture. They also provided numerous computational examples as evidence for this generalized conjecture. We consider the three-dimensional version of the Ash-Doud-Pollack conjecture. We find specific examples of three-dimensional Galois representations and computationally verify the generalized conjecture in all these examples.
|
5 |
Hiperfunções no espaço euclidiano e no toro N-dimensional / Hyperfunctions on the Euclidean space and on the N-dimensional torusSilva Junior, Antonio Victor da 03 March 2017 (has links)
Apresentamos uma construção para a teoria das hiperfunções no espaço euclidiano seguindo a abordagem de André Martineau baseada em funcionais analíticos e aplicando um teorema de dualidade de Jean-Pierre Serre. Estudamos também o teorema de divisão de hiperfunções por funções reais-analíticas, provado em Kantor e Schapira (1971). No último capítulo, desenvolvemos alguns aspectos da teoria das hiperfunções no toro. / We present the hyperfunction theory on the Euclidean space following André Martineau\'s approach based on analytic functionals and a duality theorem due to Jean- Pierre Serre. We also study a division theorem proved in Kantor and Schapira (1971). In the last chapter, we develop some aspects of hyperfunction theory on the torus.
|
6 |
Hiperfunções no espaço euclidiano e no toro N-dimensional / Hyperfunctions on the Euclidean space and on the N-dimensional torusAntonio Victor da Silva Junior 03 March 2017 (has links)
Apresentamos uma construção para a teoria das hiperfunções no espaço euclidiano seguindo a abordagem de André Martineau baseada em funcionais analíticos e aplicando um teorema de dualidade de Jean-Pierre Serre. Estudamos também o teorema de divisão de hiperfunções por funções reais-analíticas, provado em Kantor e Schapira (1971). No último capítulo, desenvolvemos alguns aspectos da teoria das hiperfunções no toro. / We present the hyperfunction theory on the Euclidean space following André Martineau\'s approach based on analytic functionals and a duality theorem due to Jean- Pierre Serre. We also study a division theorem proved in Kantor and Schapira (1971). In the last chapter, we develop some aspects of hyperfunction theory on the torus.
|
7 |
Calcul de représentations galoisiennes modulaires / Computing modular Galois representationsMascot, Nicolas 15 July 2014 (has links)
J.-P. Serre a conjecturé à la fin des années 60 et P. Deligne a prouvé au début des années 70 que pour toute newform f = q + ∑ n⩾2 a n q n 2 S k (N; "), k ⩾ 2, et tout premier l du corps de nombres Kf = Q(a n ; n ⩾ 2), il existe une représentation galoisienne l-adique pf;l : Gal(Q=Q) ! GL2 (ZKf;l) qui est non-ramifiée en dehors de ℓN et telle que le polynôme caractéristique du Frobenius en p ∤ ℓN est X2 a pX + "(p)p k 1 .Après réduction modulo l et semi-simplification, on obtient une représentation galoisienne pf;l : Gal(Q=Q) ! GL2 (Fl) modulo l, non-ramifiée en dehors de ℓN et telle que lepolynôme caractéristique du Frobenius en p ∤ ℓN est X 2 a pX + "(p)p k 1mod l, d'où un moyen de calcul rapide de ap mod l pour p gigantesque.L'objet de cette thèse est l'étude et l'implémentation d'un algorithme reposant sur cette idée (initialement due à J.-M. Couveignes and B. Edixhoven), qui calcule les coefficients ap modulo l en calculant d'abord cette représentation modulo l, en s'appuyant sur le fait que pour k < ℓ, cette représentation est réalisée dans la ℓ-torsion de la jacobienne de la courbe modulaire X1 (ℓN ).Grâce à plusieurs améliorations, telles que l'utilisation des méthodes de K. KhuriMakdisi pour calculer dans la jacobienne modulaire J1(ℓN ) ou la construction d'une fonction a 2 Q (J1(ℓN )) au bon comportement arithmétique, cet algorithme est très efficace, ainsi qu'illustré par des tables de coefficients. Cette thèse se conclut par la présentation d'une méthode permettant de prouver formellement que les résultats de ces calculs sont corrects. / It was conjectured in the late 60's by J.-P. Serre and proved in the early 70's by P.Deligne that to each newform f = q +Σn ⩾2 anqn 2 Sk(N; "), k ⩾2, and each primel of the number field Kf = Q(an; n ⩾ 2), is attached an l-adic Galois representationPf;l : Gal(Q=Q) ! GL2(ZKf;l ), which is unrami fied outside ℓN and such the characteristicpolynomial of the Frobenius element at p ∤ ℓN is X2 apX +"(p)pk1. Reducing modulo land semi-simplifying, one gets a mod l Galois representation Pf;l : Gal(Q=Q) ! GL2(Fl),which is unrami filed outside ℓN and such that the characteristic polynomial of the Frobeniuselement at p ℓN is X2 apX +"(p)pk1 mod l. In particular, its trace is ap mod l, whichgives a quick way to compute ap mod l for huge p.The goal of this thesis is to study and implement an algorithm based on this idea(originally due to J.-M. Couveignes and B. Edixhoven) which computes the coefficients apmodulo l by computing the mod l Galois representation first, relying on the fact that ifk < ℓ, this representation shows up in the ℓ-torsion of the jacobian of the modular curveX1(ℓN).Thanks to several improvements, such as the use of K. Khuri-Makdisi's methods tocompute in the modular Jacobian J1(ℓN) or the construction of an arithmetically well-behaved function alph 2 Q(J1(ℓN)), this algorithm performs very well, as illustrated bytables of coefficients. This thesis ends by the presentation of a method to formally provethat the output of the algorithm is correct.
|
8 |
Métodos analíticos, numéricos e experimentais para o cálculo de ondas de impacto em meios líquidos /Souza, André Luís de Oliveira. January 2007 (has links)
Orientador: Geraldo de Freitas Maciel / Banca: João Batista Campos Silva / Banca: Márcio Benedito Baptista / Resumo: Este trabalho versa sobre ondas de gravidade geradas por impacto de massas sólidas em meio líquido. Vários ensaios com materiais granulares, simulando o deslizamento, foram conduzidos em um canal de ondas provido de rampa a montante, sobre a qual esferas de vidro e seixos rolados, de diâmetros distintos, após deslizarem, vinham impactar o meio líquido gerando ondas de submersão. O canal, localizado no Laboratório de Hidráulica e Hidrometria da UNESP - Ilha Solteira, apresenta as dimensões 0,30 m de largura, 0,50 m de altura e 10,00 m de comprimento. Os ensaios com lâmina d'água variando entre 0,13 m e 0,20 m foram executados no intuito de checar algumas propriedades desse complexo processo físico de geração de ondas, quais sejam: o campo de velocidades do material granular incidente (centro de massa e frente de deslizamento), utilizando recursos de cinematografia e tratamento de imagens; determinação de alturas de ondas através de sondas capacitivas micro-controladas; e, por fim, obtenção de velocidades orbitais na zona de geração, através de sondas ADV (Acoustic Doppler Velocimeter). Com o objetivo de validar modelo numérico desenvolvido por Maciel (1991) e aprimorado por Nascimento (2001), os ensaios experimentais subsidiaram o processo de validação do referido modelo, baseado nas equações de Serre, para o caso de materiais granulares, até então não contemplado por outros trabalhos citados na literatura. Foi também brevemente testado, o que requer aprofundamento em trabalho futuro, um modelo numérico lagrangeano, apresentado no Anexo III. Na seqüência, foi também realizada uma análise da transferência de energia do material granular incidente para o meio líquido, cujo principal objetivo era de avaliar o percentual de energia cinética do deslizamento que fora convertido em energias cinética e potencial da onda gerada... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work is about gravity waves generated by solid mass impact into liquid. Several essays with granular material, simulating a landslide, were conduced in a wave channel provided with an upstream ramp where glass spheres and pebbles (with two different diameter intervals) slide the ramp generating submersion waves. The wave channel is located at UNESP - Ilha Solteira's Hydraulics and Hydrometrics Laboratory. Its dimension is 0,30 m (width), 0,50 m (high) and 10,00 m (length). The depth of water was from 0,13 m up to 0,20 m. Some properties of the complex physic process of landslide generated waves were investigated: granular material's velocity field (trough cinematography method and image treatment); wave height was founded with micro controlled capacitance wave gauges; and orbital velocity was acquired by Acoustic Doppler Velocimeter (ADV) gauges. The main aim was to validate a numeric model developed by Maciel (1991) further improved by Nascimento (2001) for granular material generated waves. The experimental essays were essential to the validation of the Serre's equation based model for granular material (do not contemplated by other works in the literature). A lagrangean numeric model was briefly tested (Anexo III). The energy transfer of the granular material to waves was also analyzed with purpose to evaluate the fraction of the solid's kinematics energy was converted in wave's kinematics and potential energies. In the engineering context, this work brings a chapter with several analytic, semi-empiric and empiric methods of water wave's height estimation. They are based on geometric characteristics and slide's dynamics. Another chapter compares those methods. / Mestre
|
9 |
Points entiers et rationnels sur des courbes et variétés modulaires de dimension supérieure / Integral and rational points on modular curves and varietiesLe Fourn, Samuel 20 November 2015 (has links)
Cette thèse porte sur l'étude des points entiers et rationnels de certaines courbes et variétés modulaires. Après une brève introduction décrivant les motivations et le cadre de ce genre d'études ainsi que les résultats principaux de la thèse, le manuscrit se divise en trois parties. Le premier chapitre s'intéresse aux Q-courbes, et aux morphismes Gal(Q/Q) -> PGL2(Fp) qu'on peut leur associer pour tout p premier. Nous montrons que sous de bonnes hypothèses, pour p assez grand par rapport au discriminant du corps de définition de la Q-courbe, ce morphisme est surjectif, ce qui résout un cas particulier du problème d'uniformité de Serre (toujours ouvert en général). Les outils principaux du chapitre sont la méthode de Mazur (basée ici sur des résultats d'Ellenberg), la méthode de Runge et des théorèmes d'isogénie, suivant la structure de preuve de Bilu et Parent. Le second chapitre consiste en des estimations analytiques de sommes pondérées de valeurs de fonctions L de formes modulaires, dans l'esprit de techniques développées par Duke et Ellenberg. La motivation de départ d'un tel résultat est l'application de la méthode de Mazur dans le premier chapitre. Le troisième chapitre est consacré à la recherche de généralisations de la méthode de Runge pour des variétés de dimension supérieure. Nous y redémontrons un résultat de Levin inspiré de cette méthode, avant d'en prouver une forme assouplie dite "de Runge tubulaire", plus largement applicable. Dans l'optique de recherche de points entiers de variétés modulaires, nous en donnons enfin un exemple d'utilisation à la réduction d'une surface abélienne en produit de courbes elliptiques. / This thesis concerns the study of integral and rational points on some modular curves and varieties. After a brief introduction which describes the motivation and the setting of this topic as well as the main results of this thesis, the manuscript follows a threefold development. The first chapter focuses on Q-curves, and on the morphisms Gal(Q/Q) -> PGL2(Fp) that we can build with a Q-curve for every prime p. We prove that, under good hypotheses, for p large enough with respect to the discriminant of the definition field of the Q-curve, such a morphism is surjective, which solves a particular case of Serre's uniformity problem (still open in general). The main tools of the chapter are Mazur's method (based here on results of Ellenberg), Runge's method, and isogeny theorems, following the strategy of Bilu and Parent. The second chapter covers analytic estimates of weighted sums of L-function values of modular forms, in the fashion of techniques designed by Duke and Ellenberg. The initial goal of such a result is the application of Mazur's method in the first chapter. The third chapter is devoted to the search for generalisations of Runge's method for higherdimensional varieties. Here we prove anew a result of Levin inspired by this method, before proving an enhanced version called "tubular Runge", more generally applicable. In the perspective of studying integral points of modular varieties, we finally give an example of application of this theorem to the reduction of an abelian surface in a product of elliptic curves.
|
Page generated in 0.0559 seconds