• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 15
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 65
  • 29
  • 12
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Nouvelles approches vers les lactones sesquiterpéniques / Novel approaches towards the sesquiterpene lactones

Serba, Christelle 08 June 2015 (has links)
Cette thèse développe de nouvelles séquences réactionnelles divergentes vers les lactones sesquiterpéniques, ainsi que leurs analogues. La réactivité multiple d’un substrat linéaire face à divers catalyseurs a tout d’abord permis d’obtenir différentes structures polycyliques dont la fonctionnalisation a permis d’isoler plusieurs produits naturels et des analogues. De nouvelles méthodologies ont été étudiées pour accéder aux gamma-butyrolactones, une fonctionnalité prépondérante dans les lactones sesquiterpéniques, ainsi qu’au noyau hydroazulène contenu dans les guaianes. Enfin, une synthèse divergente courte et performante a été mise au point pour accéder à divers analogues de la déoxyéléphantopine, un sesquiterpène aux propriétés anti-cancéreuses, afin de moduler et étudier son activité biologique. En parallèle de ces travaux sur les sesquiterpènes, une autre chimie a été explorée visant à réaliser la glycosylation de cystéines avec des carbohydrates non protégés. / The main thread throughout this thesis is to develop reaction sequences that could provide facile access to the sesquiterpene lactones, or analogs thereof, using strategies that would be compatible with divergent reaction pathways. A first project harnessed the multiple reactivity mode of a linea rsubstrate to obtain different polycyclic frameworks found in sesquiterpenes whose functionalisation led to several natural products and their analogs. New methodologies were studied to access gamma-butyrolactones, a preponderant functionality in sesquiterpene lactones, and hydroazulene core, the bicyclic framework of guaianes. Finally, a short divergent pathway was designed to access diverse analogs of deoxyelephantopin, a sesquiterpene showing anti-cancer effects, so as to modulate and study its biological activity. In parallel to this work on sesquiterpenes, a different chemistry was explored aiming at performing glycosylation of cysteines with unprotected carbohydrates.
32

Regulace C-MYC onkoproteinu přírodními látkami. / Regulation of C-MYC oncoprotein by natural drugs.

Filandr, František January 2016 (has links)
Sesqiterpene lactones, a group of plant secondary metabolites which include Cnicin from Cnicus benedictus plant, have an anti-proliferative and anti-tumor effect on mammalian cells by activating specific signaling pathways while also generating oxidative stress. These factors combined drive tumor cell apoptosis. A few of these compounds have reached clinical trials and seem to be a promising chemotherapeutics. The focus of this work is to elucidate the effect of cnicin on C-MYC transcription factor and oncoprotein which is overexpressed in majority of tumor tissues, the effect of cnicin on DEAD-box RNAhelicase DDX3 and on the expression levels of several metabolic genes is also studied. Through the use of western blotting, immunodetection and qPCR it was found out, that cnicin is regulating the expression of C-MYC oncoprotein on both transcriptional and translational levels, while also lowering C-MYC protein stability probably through the effect on PIM-2 kinase. Cnicin is not affecting the total amount of DDX3 protein in cells, but it seems it is lowering its degradation rate. The possible transcriptional regulation of DDX3 by cnicin is still not clear and requires further research. With the use of LC-MS quantitative analysis and qPCR, it was found out that cnicin does not affect the metabolism of...
33

Rapid stereoselective access to the tetracyclic core of puupehenone and related sponge metabolites using metal-free radical cyclisations of cyclohexenyl-substituted 3-bromochroman-4-ones.

Pritchard, R.P., Sheldrake, Helen M., Taylor, I.Z., Wallace, T.W. 2008 June 1923 (has links)
no / The tetracyclic nucleus of puupehenone, 15-oxopuupehenol and other sesquiterpene¿phenol natural products can be assembled stereoselectively in three steps, the last of these being the 6-endo-trig cyclisation of an alpha-keto radical generated from a substituted 2-(2-cyclohexenyl)ethyl 3-bromo-4-chromanone under metal-free conditions. / EPSRC
34

Searching for Anticancer Agents and Antimalarial Agents from Madagascar

Pan, Ende 01 February 2011 (has links)
In our continuing search for biologically active natural products from Madagascar as part of an International Cooperative Biodiversity Group (ICBG) program, a total of four antiproliferative extracts were studied, leading to the isolation of twelve novel compounds with antiproliferative activity against the A2780 human ovarian cancer line, and one extract with antimalarial activities was studied, which led to the isolation of five new natural products with antimalarial activities against the Dd2 and HB3 malarial parasites. The plants and their metabolites are discussed in the following order: one new xanthone and two known guttiferones from Symphonia tanalensis Jum. & H. Perrier (Clusiaceae); four new diphenyl propanes and one new cyclohepta-dibenzofuran skeleton from Bussea sakalava (Fabaceae); four new cardiac glycosides from Leptadenia madagascariensis Decne. (Apocynaceae); two new and four known alkaloids from Ambavia gerrardii (Baill.) Le Thomas (Annonaceae); five new sesquiterpene lactones from Polycline proteiformis Humbert (Asteraceae). The structures of all compounds were determined by analysis of their mass spectrometric, 1D and 2D NMR, UV and IR spectroscopic and optical rotation data. Other than structure elucidation, this dissertation also involve bioactivity evaluation of all the isolates, synthesis of two interesting alkaloids, as well as a proposal for the possible biosynthetic pathway of the new cyclohepta-dibenzofuran skeleton. / Ph. D.
35

Biochemical, Molecular and Functional Analysis of Volatile Terpene Formation in Arabidopsis Roots

Huh, Jung-Hyun 25 August 2011 (has links)
Plants produce secondary (or specialized) metabolites to respond to a variety of environmental changes and threats. Especially, volatile compounds released by plants facilitate short and long distance interaction with both beneficial and harmful organisms. Comparatively little is known about the organization and role of specialized metabolism in root tissues. In this study, we have investigated the root-specific formation and function of volatile terpenes in the model plant Arabidopsis. As one objective, we have characterized the two root-specific terpene synthases, TPS22 and TPS25. Both enzymes catalyze the formation of several volatile sesquiterpenes with (E)-β-farnesene as the major product. TPS22 and TPS25 are expressed in the root in distinct different cell type-specific patterns and both genes are induced by jasmonic acid. Unexpectedly, both TPS proteins are localized to mitochondria, demonstrating a subcellular localization of terpene specialized metabolism in compartments other than the cytosol and plastids. (E)-β-Farnesene is produced at low concentrations suggesting posttranslational modifications of the TPS proteins and/or limited substrate availability in mitochondria. We hypothesize that the mitochondrial localization of TPS22 and TPS25 reflects evolutionary plasticity in subcellular compartmentation of TPS proteins with emerging or declining activity. Since (E)-β-farnesene inhibits Arabidopsis root growth in vitro, mitochondrial targeting of both proteins may fine tune (E)-β-farnesene concentrations to prevent possible autotoxic or inhibitory effects of this terpene in vivo. We further investigated the role of volatile terpenes in Arabidopsis roots in interaction with the soil-borne oomycete, Pythium irregulare. Infection of roots with P. irregulare causes emission of the C11-homoterpene (or better called C4-norterpene) 4,8-dimethylnona-1,3,7-triene (DMNT), which is a common volatile induced by biotic stress in aerial parts of plants but was not previously known to be produced in plant roots. We demonstrate that DMNT is synthesized by a novel, root-specific pathway via oxidative degradation of the C30-triterpene, arabidiol. DMNT exhibits inhibitory effects on P. irregulare mycelium growth and oospore germination in vitro. Moreover, arabidiol and DMNT biosynthetic mutants were found to be more susceptible to P. irregulare infection and showed higher rates of Pythium colonization in comparison to wild type plants. Together, our studies demonstrate differences and plasticity in the metabolic organization and function of terpenes in roots in comparison to aboveground plant tissues. / Ph. D.
36

Isolation and Structure Elucidation of Anticancer and Antimalarial Natural Products

Liu, Yixi 12 May 2015 (has links)
As part of an International Cooperative Biodiversity Group (ICBG) program and a continuing search for antiproliferative natural products from the Madagascar rainforest, and a collaborative research project established between Virginia Tech and the Institute for Hepatitis and Virus Research (IHVR) focusing on searching for bioactive natural products from tropical forests in South Africa, 20 extracts were selected for investigation based on their antiproliferative activities against A2780 human ovarian cancer cell line or antimalarial activities against the Dd2 strain of Plasmodium falciparum. Bioassay-guided fractionation of seven of the extracts yielded twenty new compounds and twenty-four known compounds, and their structures were elucidated by using a combination of 1D (1H and 13C) and 2D NMR spectroscopy including COSY, HASQC, HMQC, HMBC, and NOESY sequences, mass spectrometry, UV, IR, ECD, optical rotation, and chemical conversions. In addition, ten known compounds were isolated from another five of the extracts, while studies on the remaining extracts were suspended due to loss of activity, unworkable small amounts of material, or low structural interest. The plants and their metabolites are discussed in the following order: five new antimalarial 5,6-dihydro-𝛼-pyrones and six bicyclic tetrahydro-𝛼-pyrone derivatives from Cryptocarya rigidifolia (Lauraceae); two new and five known antiproliferative lignans from Cleistanthus boivinianus (Phyllanthaceae); two new and two known antiproliferative sesquiterpenes lactones from Piptocoma antillana (Asteraceae); one new antiproliferative 1,4-naphthoquinone, one known antiproliferative isoflovonoid, and five known antiproliferative stilbenoids from Stuhlmannia moavi (Leguminosae); four known antiproliferative bisbenzylisoquinoline alkaloids from Anisocycla grandidieri (Menispermaceae); one new and two known antiproliferative butanolides, and two new antiproliferative secobutanolides from Ocotea macrocarpa (Lauraceae); one new antiproliferative and five known antiproliferative diterpenoids from Malleastrum rakotozafyi (Meliceae); and 10 known compounds from Monoporus sp. (Myrsinaceae), Premna corymbosa (Verbenaceae), Premna perplexanes (Verbenaceae), Epallage longipes (Asteraceae), and Cinnamosma fragrans (Canellaceae). / Ph. D.
37

<b>INVESTIGATING THE KAI2-MEDIATED SIGNALING PATHWAY OF VOLATILE SESQUITERPENES</b>

Shannon A. Stirling (18396129) 17 April 2024 (has links)
<p dir="ltr">Plants emit an amazing diversity of volatile organic compounds (VOCs) that in addition to being utilized by humans for a multitude of applications, allow plants to communicate with their environment, and play numerous roles in plant growth and development. Plants must be able to perceive and distinguish between VOC cues mediating plant-plant, plant-insect, and plant-microbe interactions to appropriately respond to stimuli. Due to the plethora of biological processes dependent on VOCs, significant progress has been made towards understanding the biosynthesis of plant VOCs and their regulation, and, in recent years, the molecular mechanisms involved in VOC emission. However, to date, little is known about how VOCs are perceived by plants and trigger cellular response(s). In animals, VOCs are recognized by odorant receptors known as G-protein-coupled receptor (GPCR) proteins. However, the few GPCR genes identified in plants appear to have different functions and the lack of a reliable marker for VOC perception has hampered research in this field.</p><p dir="ltr">The discovery of natural fumigation of terpenoids in petunias provides a means of studying VOC perception and the downstream signaling pathways by providing a visual indicator of perception. Transcriptomic analysis of wild-type and transgenic petunias deficient in terpenoid synthesis revealed a link between terpene perception in pistils with the karrikin-like signaling pathway. By utilizing biochemical, computational, and in planta experiments, we demonstrate that of the four petunia karrikin-insensitive receptors (PhKAI2), one of the Lamiid-specific KAI2 intermediate clade receptors, PhKAI2ia, can stereo-specifically perceive the (−)-germacrene D signal emitted from the floral tubes, triggering a KAI2-mediated signaling cascade and affecting plant fitness. Downregulation of PhKAI2ia results in significantly smaller stigmas compared to wild-type, and the phenotype cannot be complemented by the treatment of pistils with (−)-germacrene D, indicating that PhKAI2ia transgenic plants are acting as deaf receptors. We also show that the binding of (−)-germacrene D to PhKAI2ia is sufficient to induce complex formation with more axillary growth 2 (PhMAX2) and the subsequent degradation of suppressor of MAX2 (PhSMAX1a).</p><p dir="ltr">Altogether, our research uncovers the role(s) of the intermediate clade of KAI2 receptors, illuminates the involvement of a KAI2ia-dependent signaling pathway in volatile communication, and provides new insights into plant olfaction and the long-standing question about the nature of potential endogenous KAI2 ligand(s).</p>
38

Searching for Anticancer Natural Products From the Rainforest Plants of Suriname and Madagascar

Williams, Russell B. 09 December 2005 (has links)
Through the ICBG (International Cooperative Biodiversity Group) program and a continuing search for anticancer compounds, plant extracts were obtianed from Suriname and Madagascar and screened for cytotoxic activity in the A2780 human ovarian cancer cell line. Fractionation of a leaf and flower extract of Casearia nigrescens led to the isolation of six new clerodane diterpenes. Four were new natural products and the other two were previously unreported hydrolysis products. Their structures were determined using mass spectrometry and 1-D and 2-D NMR. All six compounds were cytotoxic in the A2780 human ovarian cancer cell line. Fractionation of a leaf extract of Vernonia pachyclada led to the isolation of four new sesquiterpene lactones. Their structures were determined using mass spectrometry, 1-D and 2-D NMR, and (in one case) single crystal X-ray diffraction. All four compounds were cytotoxic in the A2780 human ovarian cancer cell line. Fractionation of an extract of Casimirella ampla led to the isolation of three new diterpenes and two known diterpenes. Their structures were determined using mass spectrometry and 1-D and 2-D NMR. All five compounds were cytotoxic in the A2780 human ovarian cancer cell line. Fractionation of root and stem extracts of Mendoncia cowanii led to the isolation of two new naphthaquinones, and two known naphthaquinones. Their structures were determined using mass spectrometry and 1-D and 2-D NMR. All four compounds were cytotoxic in the A2780 human ovarian cancer cell line and three compounds exhibited weak inhibition of Akt kinase. The fractionation of five additional extracts resulted in the isolation of twelve known compounds. Their structures were determined using mass spectrometry, 1-D and 2-D NMR, and comparison to literature data. All twelve compounds were cytotoxic in the A2780 human ovarian cancer cell line. / Ph. D.
39

Estudos conformacionais de lactonas sesquiterpênicas e compostos relacionados / conformational study of sesquiterpene lactonas and related compounds

Cunha Neto, Alvaro 23 August 2006 (has links)
Neste trabalho foram realizados estudos conformacionais de algumas lactonas sesquiterpenicas e cálculos teóricos de deslocamento químico. O estudo conformacional é dividido em tres etapas distintas. A primeira etapa se dá pela busca conformacional em mecânica molecular, onde foram encontradas as possíveis conformações assumidas pelo sistema em estudo. Na segunda etapa, as conformações encontradas foram otimizadas em mecânica quântica. O último passo neste estudo foi o cálculode deslocamento químico e a posterior correlação com os dados experimentais. / This work is aimed on the theoretical calculation of chemical shifts of sesquiterpene lactones, based on the conformational preferences of the compounds. This conformational study is set up in three stages. The first one is a conformational search using molecular mechanics, to assess the relevant conformations of the system under study. In the second stage, the conformations are optimized by quantum mechanics, for the refinement of both the structural assignment and energy calculation of the most stable conformers found in the previous step. The last step is the theoretical calculation of chemical shifts. Finally the weighted average of calculated values is compared to experimental data.
40

Quimitaxonomia e fitoquímica de espécies da tribo Heliantheae (Asteraceae) e uso de Quimioinformática em elucidação estrutural / Chemotaxonomy and phytochemistry of Heliantheae (Asteraceae) species and the use of Chemoinformatics in structure elucidation

Stefani, Ricardo 02 October 2002 (has links)
A química de produtos naturais sempre foi uma fonte importante de novas substâncias e de substâncias bioativas. No mundo moderno, o homem utiliza os produtos naturais para diversos fins: corantes, edulcorantes, essências, defensivos agrícolas e principalmente medicamentos. Com o desenvolvimento das técnicas de isolamento de substâncias, cresceu a necessidade de organizar as informações obtidas e também a criação de meios para a identificação mais rápida das substâncias isoladas. Esta foi uma das necessidades que fez surgir a Quimioinformática. Quimioinformática é uma disciplina que utiliza os métodos da informática para organizar dados químicos, analisar estes dados e gerar novas informações a partir destes dados. Esta ferramenta tem sido utilizada com sucesso em procura por novas drogas (QSAR/QSPR), elucidação estrutural automatizada de substâncias orgânicas e em cálculos e previsão de propriedades físico-químicas de diversas moléculas. Os objetivos do presente trabalho foram o estudo fitoquímico de espécies dos gêneros Dimerostemma e Ichthyothere com o intuito de isolar novas substâncias e o desenvolvimento de técnicas envolvendo quimioinformática com o intuito de auxiliar a elucidação estrutural de produtos naturais. Realizou-se a técnica de microamstragem de tricomas glandulares de diversas espécies pertencentes a gêneros da tribo Heliantheae (Viguiera, Tithonia, Dimerostemma). Através da microamostragem foi possível identificar diversas substâncias presentes nos tricomas glandulares das espécies analisadas. Das duas espécies de Dimerostemma investigadas (D. brasilianum e D. rotundifolium) foi possível identificar dois germacrolidos e dois eudesmanolidos, enquanto que de Ichthyothere terminalis foi possível a identificação de dois melampolidos, todos eles lactonas sesquiterpênicas. Foram treinadas redes neurais artificiais para a realização da identificação dos esqueletos carbônicos de determinadas substâncias a partir dos dados obtidos através dos espectros de RMN 13C, sendo que os resultados obtidos podem ser considerados satisfatórios. Foi desenvolvido um software para efetuar a identificação automática de substâncias através da comparação com uma biblioteca de padrões que possui dados cromatográficos de 51 lactonas sesquiterpênicas. Esse software, chamado de NAPROSYS, também é capaz de fazer comparação de dados de RMN de amostra com dados de RMN presentes em uma biblioteca de dados, tornando possível a identificação imediata de substâncias presentes na biblioteca e também auxiliar a elucidação estrutural de substâncias que não estão nela presentes. Para testar a eficiência do NAPROSYS, o programa foi utilizado com sucesso para identificar LSTs através da microamostragem de tricomas glandulares. A eficiência do NAPROSYS em identificar dados de RMN de substâncias presentes na biblioteca foi testada com substâncias isoladas do gênero Tithonia e Viguiera que possuem substâncias bem descritas na literatura e já isoladas no nosso laboratório, sendo que os resultados apresentados foram excelentes. Criou-se também dois modelos de redes neurais para prever tempos de retenção de lactonas sesquiterpênicas em cromatografia líquida (QSRR) com o objetivo de melhorar o desempenho do NAPROSYS em análises de dados cromatográficos. Os resultados para este caso, embora coerentes, precisam ser melhorados. Neste trabalho concluimos que o uso das técnicas clássicas juntamente com as novas técnicas de Quimoinformática pode se tornar uma ferramenta muito eficaz para a elucidação estrutural e busca de substâncias com determinadas propriedades químicas ou mesmo na bioprospecção de novas substâncias bioativas. / Natural products chemistry has always been an important source for new andbioactive compounds. In modern world, mankind uses natural products to do many tasks: colouring, as essences, as agricultural defensives and many as medicines. Within the development of compound isolation techniques, the need for information organisation has grown. The need for quickly identification of isolated compounds has also grown. This was one of the necessities that made Chemoinformatics emerge. Chemoinformatics is a discipline that uses informatics as a tool to organise, analise and to generate new knowledge from chemical data. This tool has been used with success in automate structure elucidation, drug development (QSAR/QSPR) and to predict chemical-physical data of many molecules. The aims of the present work were the phytochemical study of species of the genera Dimerostemma and Ichthyothere to isolate new compounds, and the development of chemoinformatics techniques to aid natural products structure elucidation. The glandular trichome microsampling was made for diverse species of genera from the tribe Heliantheae (Viguiera, Tithonia, Dimerostemma). Many compounds were identified through glandular trichome microsampling. Two germacrolides and two eudesmanolides were identified from Dimerostemma species (D. brasilianum and D. episcopale), while from Ichthyothere terminalis two melampolides were identified, all of them being sesquiterpene lactones. Artificial Neural Networks were trained to make skeleton identification from data obtained from 13C NMR and the obtained results can be considered satisfactory. A software was developed to make automatic compound identification through the comparation with a compound library that possesses data from 51 STLs. This software is called NAPROSYS is also able to compare the NMR data of the sample with the NMR data stored into a compound library, making the imediate identification of compounds present into library possible and also help the structure elucidation of unknown compounds. To test NAPROSYS\' efficience to identify NMR data of compunds sored into the library was made with compounds isolated from species of Tithonia and Viguiera genera, because these genera has well describe compounds in the literature and that has been isolated in our laboratory, and the obtained results are excellent. Two Artificial Neural Network models were created to predict the retention time of sesquiterpene lactones in liquid cromatography (QSRR) with the aim of improve NAPROSYS performance in cromatographic data analysis. The results for this case, although coherent, can be improved. The conclusion of this work is that the use of classical techniques with the new techniques of chemoinformatics can be a very efficient tool to make structure elucidation, search for compounds with certain chemical properties and even the search for new bioactive compounds.

Page generated in 0.0761 seconds