• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 66
  • 55
  • 30
  • 11
  • 8
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 594
  • 594
  • 303
  • 171
  • 144
  • 138
  • 103
  • 85
  • 71
  • 62
  • 60
  • 58
  • 57
  • 56
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Modeling of Microvascular Shape Memory Composites

Terzak, John Charles January 2013 (has links)
No description available.
162

Synthesis of 10-Carboxy-N-Decyol-N, N’- Dimethyldecyl-1-Ammonium Bromide as Organogelator & Room temperature Shape Memory Programming of Stearic Acid/ Natural Rubber Bilayer Blend

Chen, Xiaocheng January 2017 (has links)
No description available.
163

Synthesis and Characterization of Shape Memory Polyurethane/ureas Containing Sulfated Sugar Units

Chai, Qinyuan 22 May 2018 (has links)
No description available.
164

Finite element study of a shape memory alloy bone implant

Eshghinejad, Ahmadreza 09 July 2012 (has links)
No description available.
165

Towards a Shape Memory Alloy Based Variable Stiffness Ankle Foot Orthosis

Bhadane-Deshpande, Minal 26 June 2012 (has links)
No description available.
166

A computer controlled data acquisition and control system for a shape-memory alloy artificial muscle

Bambeck, Timothy J. January 1993 (has links)
No description available.
167

Modeling the Coupling Between Martensitic Phase Transformation and Plasticity in Shape Memory Alloys

Manchiraju, Sivom 07 January 2011 (has links)
No description available.
168

Developing an active ankle foot orthosis based on shape memory alloys

Tarkesh Esfahani, Ehsan January 2007 (has links)
No description available.
169

A shape memory polymer concrete crack closure system activated by electrical current

Teall, O., Pilegis, M., Davies, R., Sweeney, John, Jefferson, T., Lark, R., Gardner, D. 04 May 2018 (has links)
Yes / The presence of cracks has a negative impact on the durability of concrete by providing paths for corrosive materials to the embedded steel reinforcement. Cracks in concrete can be closed using shape memory polymers (SMP) which produce a compressive stress across the crack faces. This stress has been previously found to enhance the load recovery associated with autogenous selfhealing. This paper details the experiments undertaken to incorporate SMP tendons containing polyethylene terephthalate (PET) filaments into reinforced and unreinforced 500 × 100 × 100 mm structural concrete beam samples. These tendons are activated via an electrical supply using a nickelchrome resistance wire heating system. The set-up, methodology and results of restrained shrinkage stress and crack closure experiments are explained. Crack closure of up to 85% in unreinforced beams and 26%–39% in reinforced beams is measured using crack-mouth opening displacement, microscope and digital image correlation equipment. Conclusions are made as to the effectiveness of the system and its potential for application within industry. / EPSRC for their funding of the Materials for Life (M4L) project (EP/K026631/1) and Costain Group PLC for industrial sponsorship of the project and author
170

Impact Damage Resistance of Shape Memory Alloy Hybrid Composite Structures

Jia, Hongyu 22 June 1998 (has links)
The strain energy absorption of shape memory alloy (SMA) bars and beams under tension and bending loading was studied. A theoretical model is presented that can give quantitative relations between the martensite fraction, the applied load, and the strain energy absorbed in the shape memory alloy (SMA). It was found analytically that the super-elastic SMA demonstrates a high strain energy absorption capability. The closed- form solution of the strain energy absorption capability of SMA bars is a simple and useful tool in the design of energy absorption applications of super-elastic SMA. The nonlinear equations for SMA hybrid composite plates, which can be used for low velocity impact or quasi-static contact loading, are derived. The governing equations include the transverse shear deformation to the first-order, large deformation of the plates, and SMA/epoxy lamina. The equations are derived in the general form with general boundary conditions and general stack of angle ply. The equations can be simplified to special forms in the specific applications. A theoretical study of the impact force and the strain energy absorption of an SMA/graphite/epoxy composite beam under a low-velocity impact has been performed. The contact deformation, the global bending deformation, the transverse shear deformation, and the martensitic phase transformation of the super-elastic SMA fibers are studied. The energy absorbed by the SMA hybrid composite is calculated for each task of the absorption mechanisms: contact deformation, global bending deformation, and The analysis methods and models developed in this dissertation are the first reported research in modeling SMA composite under low velocity impact and quasi-static loading. The models and methods developed here can be used for further study and design of SMA composites for low velocity impact or quasi-static loading in failure process. / Ph. D.

Page generated in 0.0459 seconds