• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 434
  • 185
  • 104
  • 100
  • 49
  • 35
  • 25
  • 18
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1185
  • 339
  • 102
  • 102
  • 93
  • 93
  • 88
  • 84
  • 76
  • 76
  • 70
  • 69
  • 68
  • 58
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Nanopartículas magnéticas de cobalto metálico e ferrita de cobalto recobertas com ouro como materiais biocompatíveis visando aplicações em biomedicina / Magnetic nanoparticles of gold-coated cobalt and cobalt ferrite as biocompatible materials for biomedical applications

Souza Junior, João Batista 24 May 2012 (has links)
Atualmente, as nanopartículas superparamagnéticas despertam enorme interesse científico devido sua grande variedade de aplicações em biomedicina, tanto na área de diagnóstico quanto no tratamento de enfermidades. Embora muitos materiais vem sendo estudados, os óxidos de ferro (magnetita e maghemita) apresentam maiores avanços nos estudos para aplicações em medicina. A preferência por óxidos de ferro se deve a baixa toxicidade destas partículas quando comparado as nanopartículas metálicas ou ligas. Entretanto, as nanopartículas destes óxidos possuem baixas magnetizações de saturação que diminuem ainda mais com as sucessivas etapas de recobrimento necessárias para conferir funcionalidade a estas partículas. Desse modo, há uma necessidade atual para o desenvolvimento de nanopartículas superparamagnéticas com elevada magnetização, baixa toxicidade e maior facilidade de funcionalização da sua superfície com biopolímeros e agentes funcionalizantes. Neste trabalho, nanopartículas superparamagnéticas de cobalto metálico e ferrita de cobalto foram sintetizadas e suas propriedades magnéticas foram comparadas com a magnetita. Nanopartículas de cobalto foram escolhidas, pois seu elevado comportamento ferromagnético é menor apenas que o ferro metálico, além do baixo custo de seus reagentes. As nanopartículas magnéticas foram sintetizadas pelos métodos de microemulsão e decomposição térmica (baseado no método poliol) e suas composições química, estrutural, tamanho e distribuição de tamanho foram devidamente determinadas. Além disso, as nanopartículas de cobalto metálico e ferrita de cobalto foram recobertas com ouro utilizando o método de crescimento mediado por semente. Os sistemas microemulsionados utilizados neste trabalho não foram eficientes nem na síntese de nanopartículas estáveis de cobalto metálico nem no seu esperado controle morfológico. Já o método de decomposição térmica resultou em um rigoroso controle de composição química, estrutural e morfológico para as diferentes nanopartículas sintetizadas. O recobrimento com ouro foi efetivo na proteção do núcleo magnético e adicionalmente conferiu estabilidade, baixa toxicidade e bifuncionalidade às nanopartículas magnéticas através do seu fenômeno de ressonância plasmônica de superfície o qual foi preservado na nanoestrutura core@shell. O comportamento superparamagnético das nanopartículas de cobalto metálico recobertas com ouro e sua elevada magnetização de saturação foram expressivamente intensificadas quando comparadas as nanopartículas de magnetita sem recobrimento. Portanto, as nanopartículas sintetizadas neste trabalho apresentam propriedades de superfície e magnéticas otimizadas demonstrando um bom potencial para aplicações em biomedicina como sensores bifuncionais óptico-magnético. / Superparamagnetic nanoparticles have been extensively studied because its wide range of biomedical applications in both diagnostic and therapy areas. Although different materials are currently investigated, superparamagnetic iron oxides nanoparticles (SPION), magnetite and maghemite, are the most extensively studied for applications in medicine. The lower toxicity profile of the SPION becomes the most attractive than metal or alloys nanoparticles. Nevertheless, iron oxides nanoparticles have low saturation magnetization, which further decreases due to successive coats to provide their functionality, leading the actual demand to develop superparamagnetic nanoparticles with high magnetization, low toxicity and easy surface functionalization with biocompatible agents. In this work, superparamagnetic nanoparticles of metallic cobalt and cobalt ferrite were synthesized and their magnetic properties were compared with the magnetite SPION. Cobalt nanoparticles were chosen because present high ferromagnetic behavior among chemical elements, second only to iron, besides their low cost. The magnetic nanoparticles were synthesized by both microemulsion and thermal decomposition (based on the polyol process) methods and their chemical composition, structure, size and size distribution were properly characterized. In addition, the ferrite and metallic cobalt nanoparticles were coated with gold by using the seed-mediated growth method. The used microemulsion systems were not efficient enough to synthesize stable metallic nanoparticles and to promote the expected morphological control even to ferrites. Instead, the thermal decomposition processes resulted in rigorous control of chemical compositional, structure and morphology in all different prepared samples. Au-coating process was effective to protect the magnetic nuclei also giving additional stability, low toxicity and a bifunctionality to the magnetic nanoparticle since their surface plasmon resonance phenomenon was preserved in the core@shell nanostructure. The superparamagnetic behavior of the Au-coated cobalt nanoparticle was preserved and their saturation magnetization was significantly increased compared with the naked magnetite SPION. In conclusion, the synthesized nanoparticles present enhanced magnetic and surface properties showing good potential to be used in biomedical application as bifunctional optical-magnetic sensor.
122

Síntese do Fe3O4@SiO2:phen:Eu3+: um nanocompósito magnético luminescente visando aplicações biomédicas / Synthesis of Fe3O4@SiO2:phen:Eu3+: a luminescent magnetic nanocomposite for biomedical applications

Silva, Raphael Lucas de Sousa e 03 March 2017 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-07-10T11:42:20Z No. of bitstreams: 2 Dissertação - Raphael Lucas de Sousa e Silva - 2017.pdf: 3882688 bytes, checksum: 6b33233b331ed11ce579c9148910d0d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-07-10T11:46:08Z (GMT) No. of bitstreams: 2 Dissertação - Raphael Lucas de Sousa e Silva - 2017.pdf: 3882688 bytes, checksum: 6b33233b331ed11ce579c9148910d0d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-07-10T11:46:09Z (GMT). No. of bitstreams: 2 Dissertação - Raphael Lucas de Sousa e Silva - 2017.pdf: 3882688 bytes, checksum: 6b33233b331ed11ce579c9148910d0d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Among the various iron oxides studied, a magnetite (Fe3O4) stands out due to its superparamagnetic behavior and its high biocompatibility. Luminescent properties working cooperatively in magnetic nanoparticles with which the material converts certain types of energy into emission of electromagnetic radiation at the same time, which enables an interaction by magnetic fields. In the present work, an investigation and structural, elemental and morphological analysis of superparamagnetic / luminescent particles formed by coating of iron oxide by an SiO2 base network was carried out. The Fe3O4 oxide was synthesized by the coprecipitation method, and in the Eu3+ rare earth together with the 1,10-phenanthroline linker in the network, were responsible for energy transfer processes in systems that checked as optical materials for materials. The nanocomposites synthesized obeyed the formation of a core-shell system and was verified by micrographs obtained by Electron Transmission Electron Microscopy, evidencing a formation of nanoparticles of varied sizes. As the compositions of the phases of the materials were characterized by X-ray Diffraction, Radiated Spark Energy and Absorption Spectroscopy in the Infrared region, showing a crystal phase of the magnetic oxide and a formation of nanocomposite. The properties of interest (magnetism and photoluminescence) were evaluated and the respective results presented agreed with each other, with characteristic emissions of Eu3+ emitting a pink coloration, and an emission intensity for a concentration of this species in the material. The materials presented a superparamagnetic behavior, evidencing that the oxide coating did not change as Fe3O4 magnetic characteristics, and is in turn presented in a saturation magnetization of 55 emu / g with a magnetic domain of 8.9 nm. As nanoparticles have dimensions that indicate that a part has a magnetic domain. / Entre os diversos óxidos de ferro estudados, a magnetita (Fe3O4) destaca-se, devido ao seu comportamento superparamagnético e a sua alta biocompatibilidade. Propriedades luminescentes trabalhando de forma cooperativa em nanopartículas magnéticas faz com que o material converta certos tipos de energia em emissão de radiação eletromagnética ao mesmo tempo, que possibilita a interação por campos magnéticos. No presente trabalho, foi investigada a síntese e a caraceterização estrutural, elementar e morfológica de partículas superparamagnéticas/luminescentes formadas pelo revestimento do óxido de ferro por uma rede a base de SiO2. O óxido Fe3O4 foi sintetizado pelo método de coprecipitação, e o íon terra-rara Eu3+ juntamente com ligante 1,10-fenantrolina na rede, foram responsáveis por processos de transferência de energia inter e intrasistemas que conferiram as propriedades ópticas aos materiais. Os nanocompósitos sintetizados obedeceram a formação de um sistema core-shell sendo comprovado pelas micrografias obtidas por Microscopia Eletrônica de Transmissão, evidenciando a formação de nanopartículas de tamanhos variados. As composições das fases dos materiais foram caracterizadas por Difração de Raios X, Energia Dispersiva de Raios X e Espectroscopia de Absorção na região do Infravermelho, mostrando a fase cristalina do óxido magnético e a formação do nanocompósito. As propriedades de interesse (magnetismo e fotoluminescência) foram avaliadas e seus respectivos resultados apresentaram concordância entre si, com emissões características do íon Eu3+ emitindo uma coloração rosa, e a intensidade de emissão foi equivalente a concentração desta espécie no material. Os materiais apresentaram um comportamento superparamagnético, evidenciando que o recobrimento do óxido não alterou as características magnéticas do Fe3O4, e este por sua vez apresentou uma magnetização de saturação de 55 emu/g com domínio magnético de 8,9 nm. As nanopartículas apresentaram dimensões que indicaram que majoritariamente uma partícula possui apenas um domínio magnético.
123

Investigação ab initio dos mecanismos de formação de nanoligas core-shell com platina e metais de transição dos períodos 3d, 4d e 5d / Ab initio investigation of mechanisms of formation of core-shell nanoalloys with platinum and 3d, 4d, and 5d transition metals

Justo, Stella Granatto 06 December 2017 (has links)
Nanoligas bimetálicas têm atraído a atenção de pesquisadores nas últimas décadas devido a possibilidade de ajustar suas propriedades físico-químicas, tais como propriedades elétricas, ópticas, magnéticas e de reatividade, por meio da variação do número de átomos, da composição química e do formato geométrico. As nanoligas bimetálicas que combinam Pt com outros metais são especificamente interessantes na área de catálise heterogênea, devido a possibilidade de se obter materiais com propriedades distintas de seus respectivos sistemas unários no que se refere ao surgimento ou aumento da atividade catalítica, à seletividade e, muitas vezes, ao preço reduzido. Esse trabalho tem como objetivo investigar as propriedades estruturais, energéticas, eletrônicas e de estabilidade de nanoligas bimetálicas core-shell de 55 átomos que combinam Pt com metais de transição (MT) pertencentes às séries de transição 3d, 4d e 5d dos grupos de Fe a Zn. Esses sistemas foram estudados utilizando cálculos de primeiros princípios (ab initio) baseados na teoria do funcional da densidade, tal como implementada no código computacional VASP (Vienna Ab initio Simulation Package). As nanoligas putativas de mínimo global energético (pGMC) de composição Pt13MT42 e Pt42MT13 calculadas nesse estudo apresentaram características particulares quanto à geometria e ao arranjo das espécies metálicas na nanoliga. Ao que diz respeito aos arranjos core-shell, foram observados dois arranjos em que a fica Pt no caroço (Pt13Ag42 e Pt13 Au42) e sete arranjos em que a Pt fica na superfície (Pt42Fe13, Pt42Co13, Pt42Ni13, Pt42Cu13, Pt42Ru13, Pt42Rh13 e Pt42Os13). Os mecanismos que levam à formação destas e das demais nanoligas pGMC foram investigados com base em três fatores: raio atômico, energia de superfície e cargas de Bader. Verificou-se que raio e a energia de superfície competem como fator determinante pelas posições preferenciais de cada espécie metálica na nanoliga. Nos casos em que houve divergência, o raio apresentou-se como o fator de maior importância, entretanto, quando o raio das espécies são muitos próximos, a energia de superfície exerce um papel de maior importância. A partir da análise de cargas de Bader, observou-se ocorrência de transferência de carga da região do caroço para a região da superfície para a maioria das nanoligas. No mais, observou-se que as nanoligas core-shell contam com atração coulômbica de maior magnitude do que as demais nanoligas pGMC, como resultado de altas cargas de sinal oposto em cada uma das regiões. / Bimetallic nanoalloys have been attracting attention since the last decades due to the possibility of adjusting their physical-chemical properties, such as electrical, optical, magnetic and reactivity properties, by means of the variation of the number of atoms, chemical composition and geometry. Bimetallic nanoalloys that combine Pt with other metals are especially interesting for heterogeneous catalysis given the possibility of obtaining materials with properties that differ from their respective unary systems regarding the appearance or increase of catalytical activity, selectivity and, in many cases, reduced cost. The aim of this work is the evaluation of the stability and of structural, energetic and electronic properties of 55 atom core-shell bimetallic nanoalloys that combine Pt with transition metals (MT) from the 3d, 4d, and 5d transition periods from Fe to Zn groups. These systems were studied using first principle (ab initio) calculations based on density functional theory, as implemented in the VASP (Viena Ab initio Simulation Package) computer code. The nanoalloys with Pt13MT42 and Pt42MT13 compositions which were observed as putative global minimum configuration (pGMC) presented unique characteristics regarding their geommetry and the arrangement of the different metals within the nanoalloy. Considering the core-shell nanoalloys, two arrangements in which Pt is located in the core were observed (Pt13Ag42 e Pt13 Au42) as well as seven arrangements with Pt in the surface (Pt42Fe13, Pt42Co13, Pt42Ni13, Pt42Cu13, Pt42Ru13, Pt42Rh13 e Pt42Os13). The mechanisms that lead to the formation of these and of the remaining pGMC nanoalloys were investigated considering three factors: atomic radius, surface energy and Bader charges. It was verified that atomic radius and surface energy compete directly for the determination of preferential sites for the atoms in the nanoalloy. When these two factors diverge, the atomic radius is the most important factor. However, when the radii of the species involved are similar, the surface energy becomes the determining factor. In addition, Bader charges analysis showed that, for most nanoalloys, the core is positively charged and the shell accumulates negative charge, indicating that charge is transfered from the atoms in the core to the ones in the surface. Besides, the core-shell nanoalloys have a higher coulombic attraction in comparison with others pGMC, due to high quantities of charge with opposite sign in each region.
124

Shell repair as a response to attempted predation in some Palaeozoic and younger gastropods

Lindström, Anna January 2005 (has links)
<p>Traces of unsuccessful predatory attacks can be found in the hard parts of shell-bearing organisms as repaired shell injuries and are often preserved in the fossil record. These repaired shell injuries can help to deduce the relationship between predator and prey in the past. Gastropods afford an excellent opportunity for study since their shells are easily recognized from the Cambrian onwards, and usually preserve a full record of their life history. Predation is a phenomenon which has led to a great variety of adaptations among prey organisms in their quest to avoid being eaten. Increased predation pressure seems to have been one of the factors that has fueled the evolution of predation-resistant shell morphologies.</p><p>Individual case studies examine the frequency of shell repair in assemblages of Palaeozoic gastropods from different geological periods. The Silurian species <i>Poleumita discors</i> showed a shell repair frequency of 10 %, while only 4 % of the Devonian species <i>Praenatica gregaria</i> have been repaired. The Palaeozoic bilaterally symmetrical bellorphontiform molluscs also showed low levels of shell repair.</p><p>Similar shell morphologies in the long-lived group of pleurotomarioid gastropods were examined and shell repair frequenceis calculated to investigate potential variation through geological time. The Palaeozoic species showed repair frequencies of 17.1 % and 4.2 %. The frequency increased in the Mesozoic to between 28.8 % and 46.6 %, while all shells of Recent pleurotomarioids in the study showed repaired injuries. The repaired injuries found do not change in appearance through time, which is probably a reflection of the presence of the slit in the apertural margin. Which type of injury is the most abundant can be seen to change with time, and there is also an increase in size with time. This may be a defensive strategy taken up by the pleurotomarioids as a response to more abundant predators.</p>
125

Shell repair as a response to attempted predation in some Palaeozoic and younger gastropods

Lindström, Anna January 2005 (has links)
Traces of unsuccessful predatory attacks can be found in the hard parts of shell-bearing organisms as repaired shell injuries and are often preserved in the fossil record. These repaired shell injuries can help to deduce the relationship between predator and prey in the past. Gastropods afford an excellent opportunity for study since their shells are easily recognized from the Cambrian onwards, and usually preserve a full record of their life history. Predation is a phenomenon which has led to a great variety of adaptations among prey organisms in their quest to avoid being eaten. Increased predation pressure seems to have been one of the factors that has fueled the evolution of predation-resistant shell morphologies. Individual case studies examine the frequency of shell repair in assemblages of Palaeozoic gastropods from different geological periods. The Silurian species Poleumita discors showed a shell repair frequency of 10 %, while only 4 % of the Devonian species Praenatica gregaria have been repaired. The Palaeozoic bilaterally symmetrical bellorphontiform molluscs also showed low levels of shell repair. Similar shell morphologies in the long-lived group of pleurotomarioid gastropods were examined and shell repair frequenceis calculated to investigate potential variation through geological time. The Palaeozoic species showed repair frequencies of 17.1 % and 4.2 %. The frequency increased in the Mesozoic to between 28.8 % and 46.6 %, while all shells of Recent pleurotomarioids in the study showed repaired injuries. The repaired injuries found do not change in appearance through time, which is probably a reflection of the presence of the slit in the apertural margin. Which type of injury is the most abundant can be seen to change with time, and there is also an increase in size with time. This may be a defensive strategy taken up by the pleurotomarioids as a response to more abundant predators.
126

Effects of localized geometric imperfections on the stress behavior of pressurized cylindrical shells

Rinehart, Adam James 30 September 2004 (has links)
The influence of dent imperfections on the elastic stress behavior of cylindrical shells is explored. This problem is of central importance to the prediction of fatigue failure due to dents in petroleum pipelines. Using an approximate technique called the Equivalent Load Method, a semi-analytical model of two-dimensional dent stress behavior is developed. In the three-dimensional situation, decreased dent localization, in particular dent length, and increased dent depth are confirmed to cause dent stress concentration behavior to shift from having a single peak at the dent center to having peaks at the dent periphery. It is demonstrated that the equivalent load method does not predict this shift in stress behavior and cannot be relied upon to analyze relatively small, deep imperfections. The two stress modes of dents are associated with two modes of dent fatigue behavior that have significantly different fatigue lives. A method for distinguishing longer lived Mode P dents from shorter lived Mode C dents based on two measured features of dent geometry is developed and validated. An approach for implementing this analysis in the evaluation of real dents is also suggested.
127

Investigation of molecular mechanisms regulating biomineralization of pearl oyster Pinctada maxima

Gardner, Luke David January 2008 (has links)
Biomineralization is a process encompassing all mineral containing tissues produced within an organism. The most dynamic example of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this remarkable architecture. Subsequently, for the past decade considerable research have been undertaken to identify and characterize the protein components involved in biomineralization. Despite these efforts the general understanding of the process remains ambiguous. This study employs a novel molecular approach to further the elucidation of the shell biomineralization. A microarray platform has been custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from the mantle, an organ involved in shell formation. This microarray has been used as the primary tool for three separate investigations in an effort to associate transcriptional gene expression from P. maxima to the process of shell biomineralization. The first investigation analyzes the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and each analyzed for gene expression with PmaxArray 1.0. Over 2000 ESTs were differentially expressed among the tissue sections, identifying five major expression regions. Three of these regions have been proposed to have shell formation functions belonging to nacre, prismatic calcite and periostracum. The spatial gene expression map was confirmed by in situ hybridization, localizing a subset of ESTs from each expression region to the same mantle area. Comparative sequence analysis of ESTs expressed in the proposed shell formation regions with the BLAST tool, revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell formation genes. The second investigation correlates temporal EST expression during P. maxima larval ontogeny with transitions in shell mineralization during the same period. A timeline documenting the morphologicat microstructural and mineralogical shell characteristics of P. maxima throughout larval ontogeny has been established. Three different shell types were noted based on the physical characters and termed, prodissoconch I, prodissoconch 11 and dissoconch. PmaxArray 1.0 analyzed ESTs expression of animals throughout the larval development of P. maxima, noting up-regulation of 359 ESTs in association with the shell transitions from prodissoconch 1 to prodissoconch 11 to dissoconch. Comparative sequence analysis of these ESTs indicates a number of the transcripts are novel as well as showing significant sequence similarities between ESTs and known shell matrix associated genes and proteins. These ESTs are discussed in relation to the shell characters associated with their temporal expression. The third investigation uses PmaxArray 1.0 to analyze gene expression in the mantle tissue of P. maxima specimens exposed to sub-lethal concentrations of a shell-deforming toxin, tributyltin (TBT). The shell specific effects of TBT are used in this investigation to interpret differential expression of ESTs with respect to shell formation functions. A lethal and sublethal TBT concentration range was established for P. maxima, noting a concentration of 50 ng L- 1 TBT as sub-lethal over a 21 day period. Mantle tissue from P. maxima animals treated with 50 ng L- 1 TBT was assessed for differential EST expression with untreated control animals. A total of 102 ESTs were identified as differentially expressed in association with TBT exposure, comparative sequence identities included an up-regulation of immunity and detoxification related genes and down-regulation of several shell matrix genes. A number of transcripts encoding novel peptides were additionally identified. The potential actions of these genes are discussed with reference to TBT toxicity and shell biomineralization. This thesis has used a microarray platform to analyze gene expression in spatial, temporal and toxicity investigations, revealing the involvement of numerous gene transcripts in specific shell formation functions. Investigation of thousands of transcripts simultaneously has provided a holistic interpretation of the organic components regulating shell biomineralization.
128

Structural and acoustic responses of a submerged vessel

Caresta, Mauro, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Excitation of the low frequency vibrational modes of a submerged vessel can generate significant radiated noise levels. Vibrational modes of a submarine hull are excited from the transmission of fluctuating forces through the shaft and thrust bearings due to the propeller rotating in an unsteady fluid. The focus of this work is to investigate the structural and acoustic responses of a submarine hull under axial excitation. The submarine hull is modelled as a cylindrical shell with internal bulkheads and ring stiffeners. The cylindrical shell is closed by truncated conical shells, which in turn are closed at each end using circular plates. The entire structure is submerged in a heavy fluid medium. The structural responses of the submerged vessel are calculated by solving the cylindrical shell equations of motion using a wave approach and the conical shell equations with a power series solution. The displacement normal to the surface of the structure in contact with the fluid medium was calculated by assembling the boundary/continuity matrix. The far field radiated sound pressure was then calculated by means of the Helmholtz integral. Results from the analytical model are compared with computational results from a fully coupled finite element/boundary element model. The individual and combined effects of the various influencing factors, corresponding to the ring stiffeners, bulkheads, conical end closures and fluid loading, on the structural and acoustic responses are characterised by examining the contribution by the circumferential modes. It is shown that equally spaced internal bulkheads generate a periodic structure thus creating a grouping effect for the higher circumferential modes, but do not have strong influence on the sound radiation. Stiffeners are found to have an important effect on both the dynamic and acoustic responses of the hull. The contribution of the conical end closures on the radiated sound pressure for the lowest circumferential mode numbers is also clearly observed. This work shows the importance of the bending modes when evaluating the sound pressure radiated by a submarine under harmonic excitation from the propulsion system.
129

Structural and acoustic responses of a submerged vessel

Caresta, Mauro, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Excitation of the low frequency vibrational modes of a submerged vessel can generate significant radiated noise levels. Vibrational modes of a submarine hull are excited from the transmission of fluctuating forces through the shaft and thrust bearings due to the propeller rotating in an unsteady fluid. The focus of this work is to investigate the structural and acoustic responses of a submarine hull under axial excitation. The submarine hull is modelled as a cylindrical shell with internal bulkheads and ring stiffeners. The cylindrical shell is closed by truncated conical shells, which in turn are closed at each end using circular plates. The entire structure is submerged in a heavy fluid medium. The structural responses of the submerged vessel are calculated by solving the cylindrical shell equations of motion using a wave approach and the conical shell equations with a power series solution. The displacement normal to the surface of the structure in contact with the fluid medium was calculated by assembling the boundary/continuity matrix. The far field radiated sound pressure was then calculated by means of the Helmholtz integral. Results from the analytical model are compared with computational results from a fully coupled finite element/boundary element model. The individual and combined effects of the various influencing factors, corresponding to the ring stiffeners, bulkheads, conical end closures and fluid loading, on the structural and acoustic responses are characterised by examining the contribution by the circumferential modes. It is shown that equally spaced internal bulkheads generate a periodic structure thus creating a grouping effect for the higher circumferential modes, but do not have strong influence on the sound radiation. Stiffeners are found to have an important effect on both the dynamic and acoustic responses of the hull. The contribution of the conical end closures on the radiated sound pressure for the lowest circumferential mode numbers is also clearly observed. This work shows the importance of the bending modes when evaluating the sound pressure radiated by a submarine under harmonic excitation from the propulsion system.
130

Investigação ab initio dos mecanismos de formação de nanoligas core-shell com platina e metais de transição dos períodos 3d, 4d e 5d / Ab initio investigation of mechanisms of formation of core-shell nanoalloys with platinum and 3d, 4d, and 5d transition metals

Stella Granatto Justo 06 December 2017 (has links)
Nanoligas bimetálicas têm atraído a atenção de pesquisadores nas últimas décadas devido a possibilidade de ajustar suas propriedades físico-químicas, tais como propriedades elétricas, ópticas, magnéticas e de reatividade, por meio da variação do número de átomos, da composição química e do formato geométrico. As nanoligas bimetálicas que combinam Pt com outros metais são especificamente interessantes na área de catálise heterogênea, devido a possibilidade de se obter materiais com propriedades distintas de seus respectivos sistemas unários no que se refere ao surgimento ou aumento da atividade catalítica, à seletividade e, muitas vezes, ao preço reduzido. Esse trabalho tem como objetivo investigar as propriedades estruturais, energéticas, eletrônicas e de estabilidade de nanoligas bimetálicas core-shell de 55 átomos que combinam Pt com metais de transição (MT) pertencentes às séries de transição 3d, 4d e 5d dos grupos de Fe a Zn. Esses sistemas foram estudados utilizando cálculos de primeiros princípios (ab initio) baseados na teoria do funcional da densidade, tal como implementada no código computacional VASP (Vienna Ab initio Simulation Package). As nanoligas putativas de mínimo global energético (pGMC) de composição Pt13MT42 e Pt42MT13 calculadas nesse estudo apresentaram características particulares quanto à geometria e ao arranjo das espécies metálicas na nanoliga. Ao que diz respeito aos arranjos core-shell, foram observados dois arranjos em que a fica Pt no caroço (Pt13Ag42 e Pt13 Au42) e sete arranjos em que a Pt fica na superfície (Pt42Fe13, Pt42Co13, Pt42Ni13, Pt42Cu13, Pt42Ru13, Pt42Rh13 e Pt42Os13). Os mecanismos que levam à formação destas e das demais nanoligas pGMC foram investigados com base em três fatores: raio atômico, energia de superfície e cargas de Bader. Verificou-se que raio e a energia de superfície competem como fator determinante pelas posições preferenciais de cada espécie metálica na nanoliga. Nos casos em que houve divergência, o raio apresentou-se como o fator de maior importância, entretanto, quando o raio das espécies são muitos próximos, a energia de superfície exerce um papel de maior importância. A partir da análise de cargas de Bader, observou-se ocorrência de transferência de carga da região do caroço para a região da superfície para a maioria das nanoligas. No mais, observou-se que as nanoligas core-shell contam com atração coulômbica de maior magnitude do que as demais nanoligas pGMC, como resultado de altas cargas de sinal oposto em cada uma das regiões. / Bimetallic nanoalloys have been attracting attention since the last decades due to the possibility of adjusting their physical-chemical properties, such as electrical, optical, magnetic and reactivity properties, by means of the variation of the number of atoms, chemical composition and geometry. Bimetallic nanoalloys that combine Pt with other metals are especially interesting for heterogeneous catalysis given the possibility of obtaining materials with properties that differ from their respective unary systems regarding the appearance or increase of catalytical activity, selectivity and, in many cases, reduced cost. The aim of this work is the evaluation of the stability and of structural, energetic and electronic properties of 55 atom core-shell bimetallic nanoalloys that combine Pt with transition metals (MT) from the 3d, 4d, and 5d transition periods from Fe to Zn groups. These systems were studied using first principle (ab initio) calculations based on density functional theory, as implemented in the VASP (Viena Ab initio Simulation Package) computer code. The nanoalloys with Pt13MT42 and Pt42MT13 compositions which were observed as putative global minimum configuration (pGMC) presented unique characteristics regarding their geommetry and the arrangement of the different metals within the nanoalloy. Considering the core-shell nanoalloys, two arrangements in which Pt is located in the core were observed (Pt13Ag42 e Pt13 Au42) as well as seven arrangements with Pt in the surface (Pt42Fe13, Pt42Co13, Pt42Ni13, Pt42Cu13, Pt42Ru13, Pt42Rh13 e Pt42Os13). The mechanisms that lead to the formation of these and of the remaining pGMC nanoalloys were investigated considering three factors: atomic radius, surface energy and Bader charges. It was verified that atomic radius and surface energy compete directly for the determination of preferential sites for the atoms in the nanoalloy. When these two factors diverge, the atomic radius is the most important factor. However, when the radii of the species involved are similar, the surface energy becomes the determining factor. In addition, Bader charges analysis showed that, for most nanoalloys, the core is positively charged and the shell accumulates negative charge, indicating that charge is transfered from the atoms in the core to the ones in the surface. Besides, the core-shell nanoalloys have a higher coulombic attraction in comparison with others pGMC, due to high quantities of charge with opposite sign in each region.

Page generated in 0.0336 seconds