131 |
Topologie a funkce transmembránové domény kolicinu U, bakterie Shigella boydii / Topology and function of the transmembrane domain of colicin U produced by Shigella boydiiDolejšová, Tereza January 2015 (has links)
Colicin U is a protein produced by strains of bacterium Shigella boydii. It exhibits antibacterial activity against some bacterial strains Shigella and Escherichia. Based on sequence homology with colicins A, B and N, the colicin U is classified as a pore-forming colicin. Interaction of colicin U with attacked bacteria is ensured by three-step mechanism: 1) First colicin U interacts with surface receptors OmpA, OmpF and core of LPS. 2) Thereafter the colicin is translocated to periplasm through interaction with Tol proteins. 3) Finally colicin U interacts with the inner membrane of the attacked bacteria causing its depolarization. In this thesis I demonstrated pore-forming features of colicin U and further observed characteristics and properties of these pores. Using methods of measuring on black lipid membranes I determined a single channel conductance (19 pS), ion selectivity, the influence of various conditions on the behaviour of the pores. These findings, in many cases, correspond to the findings on other related colicins. Furthermore, I successfully determined the pore diameter of colicin U ( ≈ 0,8 nm). The next section of the thesis focuses on creation of single cysteine mutations of colicin U. Subsequently I produced five mutant variants of colicin U and verified their functionality so that...
|
132 |
Investigations on the Possible Role of Aromatic β-Glucoside Metabolism in Self-Defense in EnterobacteriaceaeSonowal, Robert January 2013 (has links) (PDF)
Bacteria are ubiquitous in all ecosystems and are often challenged by multiple stresses such as extreme temperatures, high salt concentrations, nutrient limitation, pH variations, radiation, predation and the presence of antibiotics/toxins. The most challenging among them is predation pressure which is one of the major causes of their mortality in different niches. Bacteria have evolved different adaptive measures to counter predation. Some of them include change in shape, size, motility, and unpalatable aggregate formation.
Aromatic β-glucosides such as salicin, produced by plants as secondary metabolites, play a significant role in protecting them from herbivores. Members of the family Enterobaceriaceae primarily present in soil, e.g. Erwinia chrysanthemi (a phytopathogen) and Klebsiella aerogenes, can utilize the aromatic β-glucosides salicin and arbutin (likely to be present in soil derived from decomposing plant materials) as a carbon source unlike their fellow members such as Escherichia coli, Shigella sonnei, and Salmonella present in the gut environment. Bacteria can obtain energy by metabolizing β-glucosides in the form of glucose. Whether they can also use these molecules as defense tools in a manner similar to plants is an intriguing possibility. In such an event, Bgl+ bacteria could derive a dual advantage in terms of energy generation and protection from predation. The current study was initiated to investigate a possible link between β-glucoside metabolism and self-defense in Enterobacteriaceae. Different members of Enterobacteriaceae comprising of both laboratory strains and natural isolates were considered as prey. Predators included were laboratory strains and soil isolates of bacteriovorous nematodes of the Rhabditidae family, the amoeba Dictyostelium discoidium and a bacteriovorous Streptomyces sp. The predator-prey interaction was analyzed by performing viability and behavioral assays in the context of β-glucoside metabolism
Results presented in Chapter 2 show that active catabolism of aromatic β¬glucosides like salicin, arbutin and esculin by Bgl+ bacteria decreases the viability of their predators. The aglycone products released during β-glucosides metabolism, e.g. saligenin in the case of salicin, are the causative agents of the mortality of the predators. The lethality is reversible up to a specific threshold of exposure. Saligenin acts as a chemo-attractant that lures and kills Caenorhabditis elegans N2. In the case of nematodes that succumb, bacteria can derive nutrition from the dead predators indicating a conversion of prey to predator. Experiments with mutant strains of Caenorhabditis elegans suggest that the dopaminergic receptor dop-1 is involved in mediating saligenin toxicity.
Studies mentioned in Chapter 3 revolve around the relevance of the predator-prey interaction discussed in Chapter 2 in the natural environment. Members of Enterobacteriaceae and their predator amoebae (cellular slime molds) and nematodes were isolated from soil. They show coexistence in most of the soil samples analyzed. All the predators isolated from soil and other natural isolates of Caenorhabditis succumb to saligenin as their laboratory counterparts with higher sensitivity in some of the strains. Soil nematodes belonging to genera Oscheius and Mesorhabditis avoid saligenin unlike the members of Caenorhabditis genus which are attracted towards saligenin. This indicates that the soil nematodes are often exposed to saligenin or saligenin-like compounds, resulting in the evolution of a genetic machinery to avoid these toxic compounds. Studies with quasi-natural environments like soil and fruit indicate that β-glucoside metabolism have similar effects on predator prey interaction in these environments, reinforcing the relevance of these observations to the natural ecology of the organisms.
The studies reported in Chapter 2 and 3 shed light on a novel defense strategy of otherwise non-pathogenic members of Enterobacteriaceae which comes with a dual advantage. These results have also brought into focus issues such as the benefit derived by bacterial populations that are genetically heterogeneous, consisting of both Bgl+ and Bgl-strains. The broad implications and future directions of the work are discussed in Chapter 4.
Work presented in Appendix deals with the investigation of the pattern of cellobiose utilization in Shigella sonnei. As mentioned in Chapter 1, it is known that members of Enterobacteriaceae exhibit diversity in their pattern of β-glucoside utilization. Wild type strains of both E. coli and Shigella sonnei are unable to utilize Arbutin, Salicin and Cellobiose. While E. coli can acquire cellobiose utilizing ability directly from the wild type state (Arb-Sal-Cel-), Shigella sonnei strains, though closely related to E. coli, have to undergo a series of mutations in a specific sequence to become capable of utilizing these sugars. Characterization of a few Shigella sonnei Cel+ mutants showed a different mode of activation of the chb operon (known to be involved in cellobiose utilization in E. coli). Considering the ecological significance of the ability to hydrolyze aromatic β-glucosides, a detailed understanding of the metabolic capability of different strains and the molecular mechanism involved becomes significant.
|
133 |
Exploring the Evolution of Cellobiose Utilization in Shigella Sonnei And the Conservation of ChbG Orthologs in EukaryotesJoseph, Asha Mary January 2016 (has links) (PDF)
The chb operon constitutes the genes essential for utilization of chitooligosaccharides in Escherichia coli and related species. The six genes of the operon code for a transcriptional regulator (ChbR) of the operon, a permease (ChbBCA), a monodeacetylase (ChbG), and a phospho-beta-glucosidase (ChbF). In the absence of the substrate, the operon is maintained in a transcriptionally repressed state, while presence of the substrate leads to transcriptional activation. Regulation of the chb operon is brought about by the concerted action of three proteins, the negative regulator NagC coded by the nag operon, the dual function regulator ChbR coded by the chb operon and the universal regulatory protein CRP. Mutations that lead to alterations in the regulation of the operon can facilitate utilization of cellobiose, in addition to chitooligosaccharides by E. coli.
The studies presented in Chapter II were aimed at understanding the evolution of cellobiose utilization in Shigella sonnei, which is phylogenetically very close to E. coli. Cel+ mutants were isolated from a Cel- wild type S. sonnei strain. Interestingly, Cel+ mutants arose relatively faster on MacConkey cellobiose agar from the S. sonnei wild type strain compared to E. coli. Similar to E. coli, the Cel+ phenotype in S. sonnei mutants was linked to the chb operon. Deletion of the phospho-β-glucosidase gene, chbF also resulted in loss of the Cel+ phenotype, indicating that ChbF is responsible for hydrolysis of cellobiose in these mutants. Previous work from the lab has shown that acquisition of two classes of mutations is necessary and sufficient to give rise to Cel+ mutants in E. coli. The first class of mutations either within the nagC locus or at the NagC binding site within the chb promoter, lead to NagC derepression. The second class consisting of gain-of-function mutations in chbR enable the recognition of cellobiose as an inducer by ChbR and subsequent activation of the operon. However, in S. sonnei a single mutational event of an IS element insertion resulted in acquisition of this phenotype. Depending on the type and location of the insertion, the mutants were grouped as Type I, and Type II. In Type I mutants an 1S600 insertion between the inherent -10 and -35 elements within the chb promoter leads to ChbR-independent constitutive activation of the operon, while in Type II mutants, an IS2/600 insertion at -113/-114, leads to ChbR-dependent, cellobiose-inducible expression of the operon. The results presented also indicate that in addition to relieving NagC mediated repression, the insertion in Type II mutants also leads to increase in basal transcription from the chb promoter. Constitutive expression of the chb operon also results in utilization of the aromatic β-glucosides salicin and arbutin, in addition to cellobiose in Type I mutants, which indicates the promiscuous nature of permease and hydrolysis enzyme of the chb operon.
This part of the thesis essentially demonstrates the different trajectories taken for the evolution of new metabolic function under conditions of nutrient stress by two closely related species. It emphasizes the significance of the strain background, namely the diversity of transposable elements in the acquisition of the novel function.
The second part of this research investigation, detailed in Chapter III deals with experiments to characterize the eukaryotic orthologs of the last gene of the chb operon. The chbG gene of E. coli codes for a monodeacetylase of chitooligosaccharides like chitobiose and chitotriose. The protein belongs to a highly conserved, but less explored family of proteins called YdjC, whose orthologs are present in many prokaryotes and eukaryotes including mammals. The human YDJC locus located on chromosome 22 is linked to a variety of inflammatory diseases and the transcript levels are relatively high in stem cells and a few cancer cells. In silico analysis suggested that the mammalian YdjC orthologs possess sequence and structural similarity with the prokaryotic counterpart. The full length mouse YdjC ortholog, which is 85% identical to the human ortholog was cloned into a bacterial vector and expressed in a chbG deletion strain of E. coli. The mouse YdjC ortholog could neither promote growth of the strain on chitobiose nor induce transcription from the chb promoter. The purified mouse YdjC ortholog could not deacetylate chitobiose in vitro as well, suggesting that the mouse ortholog failed to complement the function of the E. coli counterpart, ChbG under the conditions tested in this study. In order to characterize the mammalian YdjC orthologs more elaborately, further experimentation was performed in mammalian cell lines. The results indicate that YdjC is expressed in mammalian cell lines of different tissue origin and the expression was seen throughout the cell. Overexpression of mouse Ydjc in a few mammalian cells also resulted in increased proliferation and migration, indicating a direct or indirect role of this protein in cell growth/proliferation. The mammalian orthologs of ChbG therefore appear to have related but distinct activities and substrates compared to the bacterial counterpart that need to be elucidated further.
|
134 |
Synthesis, characterization and antimicrobial activity of cobalt and cobalt sulphide nanoparticles against selected microbes that are found in wastewaterPhuti, Moukangoe Getrude January 2018 (has links)
M. Tech (Department of Biotechnology, Faculty of Applied and Computer Sciences) Vaal University of Technology. / Water shortages, water pollution and climate changes are highly interrelated global issues. These have raised immense concerns about serious adverse effects on the quality, treatment and re-use of wastewater. A major role of water is for vitality of life on earth. Water is recognized as source of evolution from origin to degree of civilization, since it is an essential resource its treatment becomes a necessity for day to day for life.
Nanoparticles and their application in treatment of wastewater is becoming a major area of research. It is mainly applicable to the removal of major contaminants like microorganisms. This study was carried out with an objective to investigate the antibacterial and antifungal potentials of nanoparticles. Cobalt and cobalt complexes of urea and thiourea were synthesized and characterized using UV-Vs, PL, FTIR, TEM, SEM, XRD and TGA techniques. The Co particles are in a mixture of rod, agglomerates with irregular shape around 50 – 100 nm in diameter. The Co/Thiourea particles appear to be around 10 – 30nm in size. The Co complexed with urea images showed spherical to hexagonal shape with 50 nm size in diameter.
The antimicrobial activity was determined using Minimum Inhibitory and bactericidal concentration and the well diffusion method. The antibacterial and antifungal activities of ratios (1:1, 1:2, 1:3, 2:1 μg/mL) of doped cobalt nanoparticles were tested against a panel of five Gramnegative bacteria - (Escherichia coli, Pseudomonas aeruginosa, Shigella enterica, Salmonella typhi and Salmonella sonnei) human pathogenic bacteria; and two fungal strains - Aspergillus niger and Candida albicans. Zones of inhibition as a consequence of nanoparticles were compared with that of different standards like Neomycin for antibacterial activity and Amphotericin B for antifungal activity. The results showed a remarkable inhibition of the bacterial growth against the tested organisms. The most striking feature of this study is that Cobalt, Urea and Thiourea nanoparticles have antifungal activity comparable or more effective (as in case of Thiourea on A. niger) than Amphotericin B and nearly promising antibacterial activity although not comparable to Neomycin.
|
135 |
Characterization of a fourU RNA thermometer in the <i>ompA</i> gene of <i>Shigella dysenteriae</i>Kevin, Gross 04 June 2013 (has links)
No description available.
|
136 |
From Slow to Ultra-fast MAS: Structural Determination of Type-Three Secretion System Bacterial Needles and Inorganic Materials by Solid-State NMRDemers, Jean-Philippe 23 April 2014 (has links)
No description available.
|
137 |
The Anti-toxin Properties of Grape Seed Phenolic CompoundsCherubin, Patrick 01 January 2014 (has links)
Corynebacterium diphtheriae, Pseudomonas aeruginosa, Ricinus communis, Shigella dysentariae, and Vibrio cholerae produce AB toxins which share the same basic structural characteristics: a catalytic A subunit attached to a cell-binding B subunit. All AB toxins have cytosolic targets despite an initial extracellular location. AB toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against these toxins are therefore hard to develop because they use different surface receptors, entry mechanisms, enzyme activities, and cytosolic targets. We have found that grape seed extract provides resistance to five different AB toxins: diphtheria toxin (DT), P. aeruginosa exotoxin A (ETA), ricin, Shiga toxin, and cholera toxin (CT). To identify individual compounds in grape seed extract that are capable of inhibiting the activities of these AB toxins, we screened twenty common phenolic compounds of grape seed extract for anti-toxin properties. Three compounds inhibited DT, four inhibited ETA, one inhibited ricin, and twelve inhibited CT. Additional studies were performed to determine the mechanism of inhibition against CT. Two compounds inhibited CT binding to the cell surface and even stripped bound CT off the plasma membrane of a target cell. Two other compounds inhibited the enzymatic activity of CT. We have thus identified individual toxin inhibitors from grape seed extract and some of their mechanisms of inhibition against CT. This work will help to formulate a defined mixture of phenolic compounds that could potentially be used as a therapeutic against a broad range of AB toxins.
|
138 |
Antimicrobial Use and Resistance in Zoonotic Bacteria Recovered from Nonhuman PrimatesKim, Jeffrey 23 September 2016 (has links)
No description available.
|
139 |
Die Invasion von Epithelzellen durch E. coli ShigellaAdam, Thomas 24 June 2004 (has links)
Shigellen sind enteroinvasive E. coli-Klone, die beim Menschen das Krankheitsbild der bakteriellen Ruhr verursachen. Wichtige Virulenzeigenschaften dieser Bakterien werden von dem 220 kb großen Plasmid pINV kodiert. Die für das Krankheitsbild typischen blutig-eitrigen Durchfälle sind Folge der retrograden Zerstörung der Kolon-Mukosa ausgehend von der initialen Infektion im Bereich des Recto-Sigmoids. Die Infektion der Darmmukosa erfolgt über M-Zellen und assoziierte Makrophagen, nach deren apoptotischem Untergang das Bakterium Zugang zum basolateralen Pol der Enterozyten erhält; eine direkte Infektion der Enterozyten vom Darmlumen über deren apikalen Pol wird nicht beobachtet. Das eigentliche Ziel der invasiven Shigellen ist das Zytoplasma des Enterozyten, da nur dort eine relevante Replikation der Bakterien stattfindet. Dabei wird die Ausbreitung der Bakterien durch ihre Fähigkeit begünstigt, von einer primär infizierten Epithelzelle ausgehend benachbarte Epithelzellen über Plasmamembran-Ausstülpungen zu infizieren, ohne dabei den geschützten Raum des epithelialen Zytoplasmas zu verlassen. Die Aufklärung des epithelialen Invasionsmechanismus auf molekularer Ebene ist deshalb von essenzieller Bedeutung für das Verständnis sowohl der Pathogenese der Erkrankung als auch der Ökologie des Erregers. Die Infektion humaner Epithelzellen durch Shigellen erfolgt durch bakterielle Induktion von Membranausstülpungen, die über dem Bakterium fusionieren und morphologisch der Makropinozytose ähneln. Die Ausbildung der zellulären Protrusionen geht mit bedeutenden Umbauvorgängen des Zytoskeletts einher. Wir konnten zunächst in einer mikromorphologischen Analyse die einzelnen Etappen des Zytoskelett-Umbaus sowie die Mikroarchitektur der Protrusionen beschreiben. Anschließend gelang es, mit T-Plastin, Rho und einem Myosin IX Struktur- und Regulations-Moleküle zu identifizieren, die für die bakterielle Invasion funktionell bedeutend sind. Dabei fielen unterschiedliche bakteriell induzierte Rekrutierungsmuster verschiedener Rho-Isoformen und verschiedener Proteine der Rho-Familie auf. Insbesondere wurden RhoA und RhoC in unterschiedliche Bereiche des Invasionskomplexes rekrutiert. Mit umfangreichen Mutationsanalysen dieser Rho-Isoformen gelang es schließlich erstmals, ein humanes Proteinmotiv mit Techniken der `zellulären Mikrobiologie´ zu charakterisieren. Das mit Hilfe unseres Shigellen-Infektionsmodells an Epithelzellen beschriebene Rekrutierungsmotiv von Rho dürfte von fundamentaler Bedeutung sein für die räumliche Aktivitätsregulation dieser Proteinfamilie in normalen und in stimulierten Zellen. / Shigella comprise enteroinvasive clones of E. coli and are the cause of bacillary dysentery in humans. Important virulence traits of these bacteria are encoded by the 220 kb pINV plasmid. The bloody-purulent diarrhea typically seen in this disease results from retrograde destruction of colonic mucosa after inital infection of the recto-sigmoid. Infection of intestinal mucosa is via M-cells and associated macrophages. After apoptotic degradation of macrophages the microorganism gains access to the basolateral pole of enterocytes. Direct infection of enterocytes from the intestinal lumen via the apical pole is not observed. Invasive shigella target the cytoplasm of enterocytes since relevant microbial replication only takes place in this compartment. Microbial spread within the epithelial cell layer is via protrusions of the cytoplasmic membrane that reach from cell to cell thus enabling intercellular transitions without leaving the safe cytoplasmic compartment of epithelial cells. Insight into the molecular mechanisms of epithelial cell invasion is therefore essential for the comprehension of the pathogenesis of the disease as well as the ecology of the microorganism. Infection of human epithelial cells by Shigella results from bacteria-induced formation of membraneous protrusions that finally fuse above the bacterium and morphologically resemble macropinocytosis. The formation of cellular protrusions is associated with important rearrangements of the cytoskeleton. In a micromorphological study we first described the different steps of cytoskeletal reorganization and the microarchitecture of the protrusions. We then could identify structure and regulatory molecules that are functionally involved in bacterial entry: T-plastin, Rho and a myosin IX. These studies also showed different bacteria-induced recruitment patterns of Rho isoforms and of various members of the Rho protein family. In particular, RhoA and RhoC were recruited into different regions of the invasion structure. Using exhaustive mutation analysis of these Rho isoforms, we for the first time characterized a human protein motif using methods of `cellular microbiology´. The recruitment motif described using our model of epithelial cell invasion by Shigella should be significant for the spatial regulation of activity of this protein family in normal and in stimulated cells.
|
140 |
Prevalence of selected bacterial and viral entero-pathogens in children less than 5 years of age in Limpopo Province, South AfricaLedwaba, Solanka Ellen 05 1900 (has links)
MSc (Microbiology) / Department of Microbiology / See the attached abstract below
|
Page generated in 0.0518 seconds