81 |
Liquides ioniques électroactifs dans la composition d’électrolytes avancés pour des applications en énergieGélinas, Bruno 04 1900 (has links)
No description available.
|
82 |
Development of spatially branched woven node structures on the conventional weaving loomFazeli, Monireh, Hübner, Matthias, Lehmann, Theo, Gebhardt, Ulrike, Hoffmann, Gerald, Cherif, Chokri 05 November 2019 (has links)
The increasing need of consistent implementation of lightweight constructions in many technical fields makes the manufacture of near net-shaped node structure to be used in textile-reinforced composites a subject of great interest. The manufacture of the node structure is required to provide a strong node point whilst maintaining the circumference of each adjoining strut. Despite a variety of available methods to produce three-dimensional nodal fabric, the required geometry for the complex nodular connection element has not yet been fully achieved. Furthermore, the available methods have limitations. The developed woven concept in this work allows for maintaining the configuration of the node structure and dimensions of the tubes, especially at the node points. As a result, all tubes positioned at node points are fully open; this is accomplished without distorting the surrounding area once the flat woven node structure is removed from the loom and erected into three-dimensional configuration. In order to produce a three-dimensional structure on a conventional weaving machine, the structure must be flattened in an appropriate way. By using a mathematical algorithm, it is possible to graph the flattened structure precisely. The developed weaving concept and relating calculation are applied to create the weaving plan of the spatial nodal structures, which can be produced on a shuttle weaving loom. The developed concept in this paper will provide repeatable manufacturing of complex node structures by using the conventional weaving loom. The struts of node structures manufactured using this method can be woven at any angle and with spatial arrangements.
|
83 |
Ion Permeation through Membrane Channels: Molecular Dynamics Simulations StudiesMustafa, Morad 10 July 2008 (has links) (PDF)
Molecular dynamics simulation was used to study ion permeation through different membrane proteins embedded in a lipid bilayer (DMPC) with different saline solutions. The potential of mean force (PMF) for ion transport was obtained by umbrella sampling simulations. A revised MacKerell force field for tryptophan residues was studied using gramicidin A (gA) channel as a test model. The revised force field contribution to the Na+ PMF was consonant with the prediction from the experimental results, but in stark contrast to the prediction of the CHARMM force field, version 22, for the tryptophan side-chain. A new grid-based correction map algorithm by MacKerell group, called CMAP, was introduced into the CHARMM force field, version 31. The CMAP algorithm focused on optimizing phi, psi dihedral parameters for the peptide backbone. The CMAP corrections reduced the excessive translocation barrier. Decomposition demonstrated the reduction in the translocation barrier was due to effects on the K+ PMFH2O rather than on K+ PMFgA. The presence of negatively charged sulfonate group at the entrance and exit of the gA channel affected the depth and the location of the highly occupied sites. The negatively charged sulfonate group produced a strong attraction for the cations in the bulk towards the channel mouth. In the M2 transmembrane domain channel (M2-TMD), three M2-TMD structures were studied, differing only in whether the selectivity-filter (four His37 side-chains) was uncharged, +2 charged, or +3 charged. M2-TMD structural properties were compared with the structural properties of other models extracted from NMR and X-ray studies. The spontaneous cation and anion entry into the charged selectivity-filter was different from that into a neutral selectivity-filter. Cl- ions had a lower free-energy barrier in the selectivity-filter than either Na+ or NH4+ ions through the M2-TMD channel. NH4+ ions had a lower free-energy barrier in the selectivity-filter than Na+ ions. Based on accessible rotamer conformations, a revised conductance mechanism was proposed. In this conductance mechanism, the His37 side-chain functioned as an acceptor and donor group, whereas the Trp41 side-chain functioned as a carrying group.
|
84 |
Analysis of high-speed vessels for Seventh Fleet logistics supportMorgan, Eric A. 03 1900 (has links)
Approved for public release, distribution is unlimited / Commander, Logistics Group, Western Pacific (COMLOGWESTPAC) is concerned with the delivery of high priority material, ordnance, and passengers to U.S. Navy ships due to a very large operations area and limited Combat Logistics Force (CLF) assets. High-speed vessels (HSVs) may have the potential to improve the delivery of these materials when used to complement existing logistics shuttle ships. This thesis quantifies current levels of traditional naval logistics support and provides comparison to HSV-based alternatives in various scenarios. The CLF Scenario Analysis Tool (CLFSAT), a newly developed discrete event simulation model of naval logistics support, performs the analysis. Given a scenario depicting combatant movements and operations, CLFSAT provides insight into the comparative performance of different supporting naval logistics force structures. This analysis determines that HSVs can be effective logistics platforms in specific scenarios when distributing high priority material, ordnance, and stores. HSVs are very effective in small theaters with short transit distances, but for larger theaters, their effectiveness is inversely proportional to distance from the Forward Logistics Site. Regardless of theater size, HSVs show significant improvements in theater distribution of "low density, high priority" cargo, such as precision guided munitions (PGMs) or critical repair parts when customers are outside COD range. / Lieutenant Commander, United States Navy
|
85 |
Optimizing global Combat Logistics Force support for sea base operationsDeGrange, Walter C. 03 1900 (has links)
Approved for public release, distribution is unlimited / The Navy has to choose the number of, and designs for, ships in the Combat Logistics Force (CLF), and then plan how to use them to provide logistical support to our Carrier Strike Groups, Expeditionary Strike Groups, and Seabasing platforms engaged in any variety of worldwide conflicts. CLF ships are very expensive to build and equip and our budget is limited --- we need to make sure the ships we buy and the way we integrate these with our CLF fleet can continue to provide the flexible support our Navy requires. We introduce a decision support tool using a global sea route and resupply base model, and a daily time resolution optimization of CLF ship activities to support any complete, worldwide scenario. Our result is an optimal, face-valid daily operational logistics plan - a schedule of evolutions for each available CLF ship. We discover exactly how to use CLF ships to support a notional, but particularly relevant, preemptive combat scenario with follow-on humanitarian assistance missions. Finally, we study how changing CLF ship numbers and missions can enhance operational effectiveness. / Lieutenant Commander, United States Navy
|
86 |
Étude de l'implication des navettes du pyruvate découlant du métabolisme mitochondrial du glucose dans la régulation de la sécrétion d'insuline par les cellules bêta pancréatiquesGuay, Claudiane 01 1900 (has links)
Le diabète est une maladie métabolique qui se caractérise par une résistance à l’insuline des tissus périphériques et par une incapacité des cellules β pancréatiques à sécréter les niveaux d’insuline appropriés afin de compenser pour cette résistance. Pour mieux comprendre les mécanismes déficients dans les cellules β des patients diabétiques, il est nécessaire de comprendre et de définir les mécanismes impliqués dans le contrôle de la sécrétion d’insuline en réponse au glucose. Dans les cellules β pancréatiques, le métabolisme du glucose conduit à la production de facteurs de couplage métabolique, comme l’ATP, nécessaires à la régulation de l’exocytose des vésicules d’insuline. Le mécanisme par lequel la production de l’ATP par le métabolisme oxydatif du glucose déclenche l’exocytose des vésicules d’insuline est bien décrit dans la littérature. Cependant, il ne peut à lui seul réguler adéquatement la sécrétion d’insuline. Le malonyl-CoA et le NADPH sont deux autres facteurs de couplage métaboliques qui ont été suggérés afin de relier le métabolisme du glucose à la régulation de la sécrétion d’insuline. Les mécanismes impliqués demeurent cependant à être caractérisés.
Le but de la présente thèse était de déterminer l’implication des navettes du pyruvate, découlant du métabolisme mitochondrial du glucose, dans la régulation de la sécrétion d’insuline. Dans les cellules β, les navettes du pyruvate découlent de la combinaison des processus d’anaplérose et de cataplérose et permettent la transduction des signaux métaboliques provenant du métabolisme du glucose. Dans une première étude, nous nous sommes intéressés au rôle de la navette pyruvate/citrate dans la régulation de la sécrétion d’insuline en réponse au glucose, puisque cette navette conduit à la production dans le cytoplasme de deux facteurs de couplage métabolique, soit le malonyl-CoA et le NADPH. De plus, la navette pyruvate/citrate favorise le flux métabolique à travers la glycolyse en réoxydation le NADH. Une étude effectuée précédemment dans notre laboratoire avait suggéré la présence de cette navette dans les cellules β pancréatique. Afin de tester notre hypothèse, nous avons ciblé trois étapes de cette navette dans la lignée cellulaire β pancréatique INS 832/13, soit la sortie du citrate de la mitochondrie et l’activité de l’ATP-citrate lyase (ACL) et l’enzyme malique (MEc), deux enzymes clés de la navette pyruvate/citrate. L’inhibition de chacune de ces étapes par l’utilisation d’un inhibiteur pharmacologique ou de la technologie des ARN interférant a corrélé avec une réduction significative de la sécrétion d’insuline en réponse au glucose. Les résultats obtenus suggèrent que la navette pyruvate/citrate joue un rôle critique dans la régulation de la sécrétion d’insuline en réponse au glucose.
Parallèlement à notre étude, deux autres groupes de recherche ont suggéré que les navettes pyruvate/malate et pyruvate/isocitrate/α-cétoglutarate étaient aussi importantes pour la sécrétion d’insuline en réponse au glucose. Ainsi, trois navettes découlant du métabolisme mitochondrial du glucose pourraient être impliquées dans le contrôle de la sécrétion d’insuline. Le point commun de ces trois navettes est la production dans le cytoplasme du NADPH, un facteur de couplage métabolique possiblement très important pour la sécrétion d’insuline. Dans les navettes pyruvate/malate et pyruvate/citrate, le NADPH est formé par MEc, alors que l’isocitrate déshydrogénase (IDHc) est responsable de la production du NADPH dans la navette pyruvate/isocitrate/α-cétoglutarate. Dans notre première étude, nous avions démontré l’importance de l’expression de ME pour la sécrétion adéquate d’insuline en réponse au glucose. Dans notre deuxième étude, nous avons testé l’implication de IDHc dans les mécanismes de régulation de la sécrétion d’insuline en réponse au glucose. La diminution de l’expression de IDHc dans les INS 832/13 a stimulé la sécrétion d’insuline en réponse au glucose par un mécanisme indépendant de la production de l’ATP par le métabolisme oxydatif du glucose. Ce résultat a ensuite été confirmé dans les cellules dispersées des îlots pancréatiques de rat. Nous avons aussi observé dans notre modèle que l’incorporation du glucose en acides gras était augmentée, suggérant que la diminution de l’activité de IDHc favorise la redirection du métabolisme de l’isocitrate à travers la navette pyruvate/citrate. Un mécanisme de compensation à travers la navette pyruvate/citrate pourrait ainsi expliquer la stimulation de la sécrétion d’insuline observée en réponse à la diminution de l’expression de IDHc. Les travaux effectués dans cette deuxième étude remettent en question l’implication de l’activité de IDHc, et de la navette pyruvate/isocitrate/α-cétoglutarate, dans la transduction des signaux métaboliques reliant le métabolisme du glucose à la sécrétion d’insuline.
La navette pyruvate/citrate est la seule des navettes du pyruvate à conduire à la production du malonyl-CoA dans le cytoplasme des cellules β. Le malonyl-CoA régule le métabolisme des acides gras en inhibant la carnitine palmitoyl transférase 1, l’enzyme limitante dans l’oxydation des acides gras. Ainsi, l’élévation des niveaux de malonyl-CoA en réponse au glucose entraîne une redirection du métabolisme des acides gras vers les processus d’estérification puis de lipolyse. Plus précisément, les acides gras sont métabolisés à travers le cycle des triglycérides/acides gras libres (qui combinent les voies métaboliques d’estérification et de lipolyse), afin de produire des molécules lipidiques signalétiques nécessaires à la modulation de la sécrétion d’insuline. Des études effectuées précédemment dans notre laboratoire ont démontré que l’activité lipolytique de HSL (de l’anglais hormone-sensitive lipase) était importante, mais non suffisante, pour la régulation de la sécrétion d’insuline. Dans une étude complémentaire, nous nous sommes intéressés au rôle d’une autre lipase, soit ATGL (de l’anglais adipose triglyceride lipase), dans la régulation de la sécrétion d’insuline en réponse au glucose et aux acides gras. Nous avons démontré que ATGL est exprimé dans les cellules β pancréatiques et que son activité contribue significativement à la lipolyse. Une réduction de son expression dans les cellules INS 832/13 par RNA interférant ou son absence dans les îlots pancréatiques de souris déficientes en ATGL a conduit à une réduction de la sécrétion d’insuline en réponse au glucose en présence ou en absence d’acides gras. Ces résultats appuient l’hypothèse que la lipolyse est une composante importante de la régulation de la sécrétion d’insuline dans les cellules β pancréatiques.
En conclusion, les résultats obtenus dans cette thèse suggèrent que la navette pyruvate/citrate est importante pour la régulation de la sécrétion d’insuline en réponse au glucose. Ce mécanisme impliquerait la production du NADPH et du malonyl-CoA dans le cytoplasme en fonction du métabolisme du glucose. Cependant, nos travaux remettent en question l’implication de la navette pyruvate/isocitrate/α-cétoglutarate dans la régulation de la sécrétion d’insuline. Le rôle exact de IDHc dans ce processus demeure cependant à être déterminé. Finalement, nos travaux ont aussi démontré un rôle pour ATGL et la lipolyse dans les mécanismes de couplage métabolique régulant la sécrétion d’insuline. / Diabetes is a metabolic disorder characterized by a combination of insulin resistance in peripheral tissues with an inappropriate amount of insulin secreted by the pancreatic β-cells to overcome this insulin resistance. In order to help find a cure for diabetic patients, we need to elucidate the mechanisms underlying the proper control of insulin secretion in response to glucose. In pancreatic β-cells, glucose metabolism leads to the production of metabolic coupling factors, like ATP, implicated in the regulation of insulin vesicle exocytosis. The mechanism linking ATP production by the oxidative metabolism of glucose to the triggering of insulin release that involves Ca2+ and metabolically sensitive K+ channels is relatively well known. Other mechanisms are also involved in the regulation of insulin secretion in response to glucose and other nutrients, such as fatty acids and some amino acids. Malonyl-CoA and NADPH are two metabolic coupling factors that have been suggested to be implicated in the transduction of metabolic signaling coming from glucose metabolism to control the release of insulin granules. However, the mechanisms implicated remained to be defined.
The goal of the present thesis was to further our understanding of the role of the pyruvate shuttles, derived from mitochondrial glucose metabolism, in the regulation of insulin secretion. In pancreatic β-cells, pyruvate shuttles are produced by the combination of anaplerosis and cataplerosis processes and are thought to link glucose metabolism to the regulation of insulin secretion by the production metabolic coupling factors. In our first study, we wished to determine the role of the pyruvate/citrate shuttle in the regulation of glucose-induced insulin secretion. The pyruvate/citrate shuttle leads to the production in the cytoplasm of both malonyl-CoA and NADPH and also stimulates the metabolic flux through the glycolysis by re-oxidating NADH. A previous study done in the group of Dr Prentki has suggested the feasibility of the pyruvate/citrate shuttle in pancreatic β-cells. To investigate our hypothesis, we inhibited three different steps of this shuttle in INS 832/13 cells, a pancreatic β-cell line. Specifically, we repressed, using pharmacological inhibitors or RNA interference technology, the mitochondrial citrate export to the cytoplasm and the expression of malic enzyme (MEc) and ATP-citrate lyase (ACL), two key enzymes implicated in the pyruvate/citrate shuttle. The inhibition of each of those steps resulted in a reduction of glucose-induced insulin secretion. Our results underscore the importance of the pyruvate/citrate shuttle in the pancreatic β-cell signaling and the regulation of insulin secretion in response to glucose.
Other research groups are also interested in studying the implication of pyruvate cycling processes in the regulation of insulin exocytosis. They suggested a role for the pyruvate/malate and the pyruvate/isocitrate/α-ketoglutarate shuttles. Therefore, three different shuttles derived from the mitochondrial glucose metabolism could be implicated in the regulation of glucose-induced insulin release. All those three shuttles can produce NADPH in the cytoplasm. In the pyruvate/malate and the pyruvate/citrate shuttles, the NADPH is formed by cytosolic malic enzyme (MEc), whereas in the pyruvate/isocitrate/α-ketoglutarate, NADPH is produced by cytosolic isocitrate dehydrogenease (IDHc). In our first study, we established the importance of MEc expression in the regulation of insulin secretion. In our second study, we wanted to investigate the importance of IDHc expression in glucose-induced insulin secretion. The reduction of IDHc expression in INS 832/13 cells stimulated insulin release in response to glucose by a mechanism independent of ATP production coming from glucose oxidative metabolism. This stimulation was also observed in isolated rat pancreatic cells. IDHc knockdown cells showed elevated glucose incorporation into fatty acids, suggesting that isocitrate metabolism could be redirected into the pyruvate/citrate shuttle in these cells. Taken together, these results suggest that IDHc is not essential for glucose-induced insulin secretion and that a compensatory mechanism, probably involving the pyruvate/citrate shuttle, explains the enhanced insulin secretion in IDHc knockdown cells .
The pyruvate/citrate shuttle is the only pyruvate shuttle that is linked to the production of malonyl-CoA. Malonyl-CoA is a known inhibitor of carnitine palmitoyl transferase 1, the rate-limiting step in fatty acid oxidation. Therefore, the raising level of malonyl-CoA in response to glucose redirects the metabolism of fatty acids into the triglycerides/free fatty acids cycle which combine esterification and lipolysis processes. Previous studies done in the laboratory of Dr Prentki supported the concept that lipolysis of endogenous lipid stores is an important process for the appropriate regulation of insulin secretion. A first lipase, hormone-sensitive lipase (HSL), has been identified in pancreatic β-cells. HSL expression is important, but not sufficient, for the β-cell lipolysis activity. In a complementary study, we have investigated the role of another lipase, adipose triglyceride lipase (ATGL), in the regulation of insulin secretion in response to glucose and to fatty acids. We first demonstrated the expression and the activity of ATGL in pancreatic β-cells. Reducing ATGL expression using shRNA in INS 832/13 cells caused a reduction in insulin secretion in response to glucose and to fatty acids. Pancreatic islets from ATGL null mice also showed defect in insulin release in response to glucose and to fatty acids. The results demonstrate the importance of ATGL and intracellular lipid signaling in the regulation of insulin secretion.
In conclusion, the work presented in this thesis suggests a role for the pyruvate/citrate shuttle in the regulation of insulin secretion in response to glucose. This mechanism possibly implicates the production of NADPH and malonyl-CoA in the cytoplasm. The results also points to a re-evaluation of the role of IDHc in glucose-induced insulin secretion. The precise role of IDHc in pancreatic β-cells needs to be determined. Finally, the data have also documented a role of lipolysis and ATGL in the coupling mechanisms of insulin secretion in response to both fuel and non-fuel stimuli.
|
87 |
Advancing Optimal Control Theory Using Trigonometry For Solving Complex Aerospace ProblemsKshitij Mall (5930024) 17 January 2019 (has links)
<div>Optimal control theory (OCT) exists since the 1950s. However, with the advent of modern computers, the design community delegated the task of solving the optimal control problems (OCPs) largely to computationally intensive direct methods instead of methods that use OCT. Some recent work showed that solvers using OCT could leverage parallel computing resources for faster execution. The need for near real-time, high quality solutions for OCPs has therefore renewed interest in OCT in the design community. However, certain challenges still exist that prohibits its use for solving complex practical aerospace problems, such as landing human-class payloads safely on Mars.</div><div><br></div><div>In order to advance OCT, this thesis introduces Epsilon-Trig regularization method to simply and efficiently solve bang-bang and singular control problems. The Epsilon-Trig method resolves the issues pertaining to the traditional smoothing regularization method. Some benchmark problems from the literature including the Van Der Pol oscillator, the boat problem, and the Goddard rocket problem verified and validated the Epsilon-Trig regularization method using GPOPS-II.</div><div><br></div><div>This study also presents and develops the usage of trigonometry for incorporating control bounds and mixed state-control constraints into OCPs and terms it as Trigonometrization. Results from literature and GPOPS-II verified and validated the Trigonometrization technique using certain benchmark OCPs. Unlike traditional OCT, Trigonometrization converts the constrained OCP into a two-point boundary value problem rather than a multi-point boundary value problem, significantly reducing the computational effort required to formulate and solve it. This work uses Trigonometrization to solve some complex aerospace problems including prompt global strike, noise-minimization for general aviation, shuttle re-entry problem, and the g-load constraint problem for an impactor. Future work for this thesis includes the development of the Trigonometrization technique for OCPs with pure state constraints.</div>
|
88 |
Étude de l'implication des navettes du pyruvate découlant du métabolisme mitochondrial du glucose dans la régulation de la sécrétion d'insuline par les cellules bêta pancréatiquesGuay, Claudiane 01 1900 (has links)
Le diabète est une maladie métabolique qui se caractérise par une résistance à l’insuline des tissus périphériques et par une incapacité des cellules β pancréatiques à sécréter les niveaux d’insuline appropriés afin de compenser pour cette résistance. Pour mieux comprendre les mécanismes déficients dans les cellules β des patients diabétiques, il est nécessaire de comprendre et de définir les mécanismes impliqués dans le contrôle de la sécrétion d’insuline en réponse au glucose. Dans les cellules β pancréatiques, le métabolisme du glucose conduit à la production de facteurs de couplage métabolique, comme l’ATP, nécessaires à la régulation de l’exocytose des vésicules d’insuline. Le mécanisme par lequel la production de l’ATP par le métabolisme oxydatif du glucose déclenche l’exocytose des vésicules d’insuline est bien décrit dans la littérature. Cependant, il ne peut à lui seul réguler adéquatement la sécrétion d’insuline. Le malonyl-CoA et le NADPH sont deux autres facteurs de couplage métaboliques qui ont été suggérés afin de relier le métabolisme du glucose à la régulation de la sécrétion d’insuline. Les mécanismes impliqués demeurent cependant à être caractérisés.
Le but de la présente thèse était de déterminer l’implication des navettes du pyruvate, découlant du métabolisme mitochondrial du glucose, dans la régulation de la sécrétion d’insuline. Dans les cellules β, les navettes du pyruvate découlent de la combinaison des processus d’anaplérose et de cataplérose et permettent la transduction des signaux métaboliques provenant du métabolisme du glucose. Dans une première étude, nous nous sommes intéressés au rôle de la navette pyruvate/citrate dans la régulation de la sécrétion d’insuline en réponse au glucose, puisque cette navette conduit à la production dans le cytoplasme de deux facteurs de couplage métabolique, soit le malonyl-CoA et le NADPH. De plus, la navette pyruvate/citrate favorise le flux métabolique à travers la glycolyse en réoxydation le NADH. Une étude effectuée précédemment dans notre laboratoire avait suggéré la présence de cette navette dans les cellules β pancréatique. Afin de tester notre hypothèse, nous avons ciblé trois étapes de cette navette dans la lignée cellulaire β pancréatique INS 832/13, soit la sortie du citrate de la mitochondrie et l’activité de l’ATP-citrate lyase (ACL) et l’enzyme malique (MEc), deux enzymes clés de la navette pyruvate/citrate. L’inhibition de chacune de ces étapes par l’utilisation d’un inhibiteur pharmacologique ou de la technologie des ARN interférant a corrélé avec une réduction significative de la sécrétion d’insuline en réponse au glucose. Les résultats obtenus suggèrent que la navette pyruvate/citrate joue un rôle critique dans la régulation de la sécrétion d’insuline en réponse au glucose.
Parallèlement à notre étude, deux autres groupes de recherche ont suggéré que les navettes pyruvate/malate et pyruvate/isocitrate/α-cétoglutarate étaient aussi importantes pour la sécrétion d’insuline en réponse au glucose. Ainsi, trois navettes découlant du métabolisme mitochondrial du glucose pourraient être impliquées dans le contrôle de la sécrétion d’insuline. Le point commun de ces trois navettes est la production dans le cytoplasme du NADPH, un facteur de couplage métabolique possiblement très important pour la sécrétion d’insuline. Dans les navettes pyruvate/malate et pyruvate/citrate, le NADPH est formé par MEc, alors que l’isocitrate déshydrogénase (IDHc) est responsable de la production du NADPH dans la navette pyruvate/isocitrate/α-cétoglutarate. Dans notre première étude, nous avions démontré l’importance de l’expression de ME pour la sécrétion adéquate d’insuline en réponse au glucose. Dans notre deuxième étude, nous avons testé l’implication de IDHc dans les mécanismes de régulation de la sécrétion d’insuline en réponse au glucose. La diminution de l’expression de IDHc dans les INS 832/13 a stimulé la sécrétion d’insuline en réponse au glucose par un mécanisme indépendant de la production de l’ATP par le métabolisme oxydatif du glucose. Ce résultat a ensuite été confirmé dans les cellules dispersées des îlots pancréatiques de rat. Nous avons aussi observé dans notre modèle que l’incorporation du glucose en acides gras était augmentée, suggérant que la diminution de l’activité de IDHc favorise la redirection du métabolisme de l’isocitrate à travers la navette pyruvate/citrate. Un mécanisme de compensation à travers la navette pyruvate/citrate pourrait ainsi expliquer la stimulation de la sécrétion d’insuline observée en réponse à la diminution de l’expression de IDHc. Les travaux effectués dans cette deuxième étude remettent en question l’implication de l’activité de IDHc, et de la navette pyruvate/isocitrate/α-cétoglutarate, dans la transduction des signaux métaboliques reliant le métabolisme du glucose à la sécrétion d’insuline.
La navette pyruvate/citrate est la seule des navettes du pyruvate à conduire à la production du malonyl-CoA dans le cytoplasme des cellules β. Le malonyl-CoA régule le métabolisme des acides gras en inhibant la carnitine palmitoyl transférase 1, l’enzyme limitante dans l’oxydation des acides gras. Ainsi, l’élévation des niveaux de malonyl-CoA en réponse au glucose entraîne une redirection du métabolisme des acides gras vers les processus d’estérification puis de lipolyse. Plus précisément, les acides gras sont métabolisés à travers le cycle des triglycérides/acides gras libres (qui combinent les voies métaboliques d’estérification et de lipolyse), afin de produire des molécules lipidiques signalétiques nécessaires à la modulation de la sécrétion d’insuline. Des études effectuées précédemment dans notre laboratoire ont démontré que l’activité lipolytique de HSL (de l’anglais hormone-sensitive lipase) était importante, mais non suffisante, pour la régulation de la sécrétion d’insuline. Dans une étude complémentaire, nous nous sommes intéressés au rôle d’une autre lipase, soit ATGL (de l’anglais adipose triglyceride lipase), dans la régulation de la sécrétion d’insuline en réponse au glucose et aux acides gras. Nous avons démontré que ATGL est exprimé dans les cellules β pancréatiques et que son activité contribue significativement à la lipolyse. Une réduction de son expression dans les cellules INS 832/13 par RNA interférant ou son absence dans les îlots pancréatiques de souris déficientes en ATGL a conduit à une réduction de la sécrétion d’insuline en réponse au glucose en présence ou en absence d’acides gras. Ces résultats appuient l’hypothèse que la lipolyse est une composante importante de la régulation de la sécrétion d’insuline dans les cellules β pancréatiques.
En conclusion, les résultats obtenus dans cette thèse suggèrent que la navette pyruvate/citrate est importante pour la régulation de la sécrétion d’insuline en réponse au glucose. Ce mécanisme impliquerait la production du NADPH et du malonyl-CoA dans le cytoplasme en fonction du métabolisme du glucose. Cependant, nos travaux remettent en question l’implication de la navette pyruvate/isocitrate/α-cétoglutarate dans la régulation de la sécrétion d’insuline. Le rôle exact de IDHc dans ce processus demeure cependant à être déterminé. Finalement, nos travaux ont aussi démontré un rôle pour ATGL et la lipolyse dans les mécanismes de couplage métabolique régulant la sécrétion d’insuline. / Diabetes is a metabolic disorder characterized by a combination of insulin resistance in peripheral tissues with an inappropriate amount of insulin secreted by the pancreatic β-cells to overcome this insulin resistance. In order to help find a cure for diabetic patients, we need to elucidate the mechanisms underlying the proper control of insulin secretion in response to glucose. In pancreatic β-cells, glucose metabolism leads to the production of metabolic coupling factors, like ATP, implicated in the regulation of insulin vesicle exocytosis. The mechanism linking ATP production by the oxidative metabolism of glucose to the triggering of insulin release that involves Ca2+ and metabolically sensitive K+ channels is relatively well known. Other mechanisms are also involved in the regulation of insulin secretion in response to glucose and other nutrients, such as fatty acids and some amino acids. Malonyl-CoA and NADPH are two metabolic coupling factors that have been suggested to be implicated in the transduction of metabolic signaling coming from glucose metabolism to control the release of insulin granules. However, the mechanisms implicated remained to be defined.
The goal of the present thesis was to further our understanding of the role of the pyruvate shuttles, derived from mitochondrial glucose metabolism, in the regulation of insulin secretion. In pancreatic β-cells, pyruvate shuttles are produced by the combination of anaplerosis and cataplerosis processes and are thought to link glucose metabolism to the regulation of insulin secretion by the production metabolic coupling factors. In our first study, we wished to determine the role of the pyruvate/citrate shuttle in the regulation of glucose-induced insulin secretion. The pyruvate/citrate shuttle leads to the production in the cytoplasm of both malonyl-CoA and NADPH and also stimulates the metabolic flux through the glycolysis by re-oxidating NADH. A previous study done in the group of Dr Prentki has suggested the feasibility of the pyruvate/citrate shuttle in pancreatic β-cells. To investigate our hypothesis, we inhibited three different steps of this shuttle in INS 832/13 cells, a pancreatic β-cell line. Specifically, we repressed, using pharmacological inhibitors or RNA interference technology, the mitochondrial citrate export to the cytoplasm and the expression of malic enzyme (MEc) and ATP-citrate lyase (ACL), two key enzymes implicated in the pyruvate/citrate shuttle. The inhibition of each of those steps resulted in a reduction of glucose-induced insulin secretion. Our results underscore the importance of the pyruvate/citrate shuttle in the pancreatic β-cell signaling and the regulation of insulin secretion in response to glucose.
Other research groups are also interested in studying the implication of pyruvate cycling processes in the regulation of insulin exocytosis. They suggested a role for the pyruvate/malate and the pyruvate/isocitrate/α-ketoglutarate shuttles. Therefore, three different shuttles derived from the mitochondrial glucose metabolism could be implicated in the regulation of glucose-induced insulin release. All those three shuttles can produce NADPH in the cytoplasm. In the pyruvate/malate and the pyruvate/citrate shuttles, the NADPH is formed by cytosolic malic enzyme (MEc), whereas in the pyruvate/isocitrate/α-ketoglutarate, NADPH is produced by cytosolic isocitrate dehydrogenease (IDHc). In our first study, we established the importance of MEc expression in the regulation of insulin secretion. In our second study, we wanted to investigate the importance of IDHc expression in glucose-induced insulin secretion. The reduction of IDHc expression in INS 832/13 cells stimulated insulin release in response to glucose by a mechanism independent of ATP production coming from glucose oxidative metabolism. This stimulation was also observed in isolated rat pancreatic cells. IDHc knockdown cells showed elevated glucose incorporation into fatty acids, suggesting that isocitrate metabolism could be redirected into the pyruvate/citrate shuttle in these cells. Taken together, these results suggest that IDHc is not essential for glucose-induced insulin secretion and that a compensatory mechanism, probably involving the pyruvate/citrate shuttle, explains the enhanced insulin secretion in IDHc knockdown cells .
The pyruvate/citrate shuttle is the only pyruvate shuttle that is linked to the production of malonyl-CoA. Malonyl-CoA is a known inhibitor of carnitine palmitoyl transferase 1, the rate-limiting step in fatty acid oxidation. Therefore, the raising level of malonyl-CoA in response to glucose redirects the metabolism of fatty acids into the triglycerides/free fatty acids cycle which combine esterification and lipolysis processes. Previous studies done in the laboratory of Dr Prentki supported the concept that lipolysis of endogenous lipid stores is an important process for the appropriate regulation of insulin secretion. A first lipase, hormone-sensitive lipase (HSL), has been identified in pancreatic β-cells. HSL expression is important, but not sufficient, for the β-cell lipolysis activity. In a complementary study, we have investigated the role of another lipase, adipose triglyceride lipase (ATGL), in the regulation of insulin secretion in response to glucose and to fatty acids. We first demonstrated the expression and the activity of ATGL in pancreatic β-cells. Reducing ATGL expression using shRNA in INS 832/13 cells caused a reduction in insulin secretion in response to glucose and to fatty acids. Pancreatic islets from ATGL null mice also showed defect in insulin release in response to glucose and to fatty acids. The results demonstrate the importance of ATGL and intracellular lipid signaling in the regulation of insulin secretion.
In conclusion, the work presented in this thesis suggests a role for the pyruvate/citrate shuttle in the regulation of insulin secretion in response to glucose. This mechanism possibly implicates the production of NADPH and malonyl-CoA in the cytoplasm. The results also points to a re-evaluation of the role of IDHc in glucose-induced insulin secretion. The precise role of IDHc in pancreatic β-cells needs to be determined. Finally, the data have also documented a role of lipolysis and ATGL in the coupling mechanisms of insulin secretion in response to both fuel and non-fuel stimuli.
|
89 |
Étude de la stabilité thermique et protection à la surcharge de cathodes pour batteries au lithium-ionEl Khakani, Soumia 03 1900 (has links)
Dans cette thèse, nous avons effectué une étude de la stabilité thermique de quelques matériaux, utilisés comme cathodes dans les batteries au lithium-ion (BLIs), afin de contribuer à l’amélioration de leur fonctionnement. Deux matériaux, potentiellement prometteurs pour les applications d’envergure des BLIs – telles que les véhicules électriques –, ont été choisis pour cette étude. Il s’agit du phosphate de fer lithié (LiFePO4) et de l’oxyde de nickel et de manganèse de structure-type spinelle (LiMn1.5Ni0.5O4). En plus de l’étude du mécanisme de décomposition de ce dernier, l’effet de la substitution partielle du manganèse dans le matériau original (LiMn2O4) par du nickel sur la réactivité a été mise en évidence. Ces études ont été menées grâce à la calorimétrie adiabatique afin de simuler les conditions thermiques retrouvées dans des BLIs où l’environnement est quasi-adiabatique.
L’effet de trois méthodes de synthèse sur la réactivité a été examiné pour LiFePO4. Nos résultats ont montré que, contrairement aux autres matériaux de cathodes, la stabilité thermique globale de LiFePO4 est peu affectée par la méthode de synthèse. Toutefois, cette stabilité intrinsèque dont le LiFePO4 bénéficie ne le met pas à l’abri des conditions d’abus de source externes. Ainsi, nous avons développé une nouvelle classe d’additifs électrolytiques pour la protection de LiFePO4 contre la surcharge. Ces derniers consistent en l’incorporation d’une navette redox dans un liquide ionique; tirant ainsi profit des avantages des deux espèces. Notre approche nous a permis d’atteindre une concentration aussi élevée qu’une mole par litre de notre additif dans des électrolytes conventionnels. Nous avons montré qu’à une concentration optimale de 0.7 M, ces liquides ioniques fonctionnalisés ont assuré la protection de LiFePO4 contre la surcharge pour plus de 200 cycles; et ce, sans affecter ses performances électrochimiques. Finalement, pour ce qui est du deuxième matériau de cathode, nous avons établi un mécanisme de décomposition de LiMn1.5Ni0.5O4 à hautes températures en présence de l’électrolyte. En plus, notre étude a montré que la substitution partielle du manganèse par le nickel dans LiMn2O4 pour augmenter son potentiel opérationnel a affecté à la baisse sa stabilité thermique; et ce, à des températures aussi basses que 60 °C. / In this thesis, we have investigated the thermal stability of cathode materials used in lithium-ion batteries (LIBs). Using accelerating rate calorimetry, the study was carried out on two of the most attractive cathode materials for large scale LIBs; namely, lithium iron phosphate (LiFePO4) and nickel-manganese spinel oxide (LiMn1.5Ni0.5O4). While the impact of partial nickel substitution for manganese in LiMn2O4 was investigated for LiMn1.5Ni0.5O4 along with its decomposition mechanism, the effect of the synthetic method was evaluated for LiFePO4. Our results have demonstrated that the high intrinsic thermal stability of LiFePO4 was only slightly affected by the synthetic method within the three studied routes. In order to enhance the safe operation of this material by providing a protection form electrical abuse during overcharge, we have developed a new class of overcharge protection additives. By combining a redox shuttle with an ionic liquid, we were able, for the first time, to dissolve the additive for protection against overcharge at concentrations up to 1 M in conventional electrolytes for LIBs. Our results have shown an overcharge protection of LiFePO4 for over 200 cycles, using an optimal concentration of 0.7 M, without compromising its electrochemical performances. Finally, by studying the thermal behavior of LiMn1.5Ni0.5O4 at different temperatures, we were able to establish the decomposition mechanism of this material. Moreover, our study has proven that the presence of nickel in LiMn1.5Ni0.5O4, that ensures the high voltage of this cathode material, is also responsible for the very poor thermal stability of this material at temperatures as low as 60 ºC.
|
90 |
Optimal Route Planning for Electric Vehicles / Optimal Route Planning for Electric VehiclesJuřík, Tomáš January 2013 (has links)
In this work we present algorithms that are capable of calculating paths to destination for electric vehicles. These paths can be based on the simple metrics such as the distance, time or the paths can be based on more advanced metric such as the minimum energy demanding metric. This metric is parameterizable by the physical construction of the electrical vehicle. We also propose a new algorithm that computes energy optimal paths that are more acceptable by the driver, because it also takes into consideration the time metric while computing the path.
|
Page generated in 0.0314 seconds