1 |
Latent state estimation in a class of nonlinear systemsPonomareva, Ksenia January 2012 (has links)
The problem of estimating latent or unobserved states of a dynamical system from observed data is studied in this thesis. Approximate filtering methods for discrete time series for a class of nonlinear systems are considered, which, in turn, require sampling from a partially specified discrete distribution. A new algorithm is proposed to sample from partially specified discrete distribution, where the specification is in terms of the first few moments of the distribution. This algorithm generates deterministic sigma points and corresponding probability weights, which match exactly a specified mean vector, a specified covariance matrix, the average of specified marginal skewness and the average of specified marginal kurtosis. Both the deterministic particles and the probability weights are given in closed form and no numerical optimization is required. This algorithm is then used in approximate Bayesian filtering for generation of particles and the associated probability weights which propagate higher order moment information about latent states. This method is extended to generate random sigma points (or particles) and corresponding probability weights that match the same moments. The algorithm is also shown to be useful in scenario generation for financial optimization. For a variety of important distributions, the proposed moment-matching algorithm for generating particles is shown to lead to approximation which is very close to maximum entropy approximation. In a separate, but related contribution to the field of nonlinear state estimation, a closed-form linear minimum variance filter is derived for the systems with stochastic parameter uncertainties. The expressions for eigenvalues of the perturbed filter are derived for comparison with eigenvalues of the unperturbed Kalman filter. Moment-matching approximation is proposed for the nonlinear systems with multiplicative stochastic noise.
|
2 |
Extended and Unscented Kalman Smoothing for Re-linearization of Nonlinear Problems with ApplicationsLowe, Matthew 30 April 2015 (has links)
The Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Ensemble Kalman Filter (EnKF) are commonly implemented practical solutions for solving nonlinear state space estimation problems; all based on the linear state space estimator, the Kalman Filter. Often, the UKF and EnKF are cited as a superior methods to the EKF with respect to error-based performance criteria. The UKF in turn has the advantage over the EnKF of smaller computational complexity. In practice however the UKF often fails to live up to this expectation, with performance which does not surpass the EKF and estimates which are not as robust as the EnKF. This work explores the geometry of alternative sigma point sets, which form the basis of the UKF, contributing several new sets along with novel methods used to generate them. In particular, completely novel systems of sigma points that preserve higher order statistical moments are found and evaluated. Additionally a new method for scaling and problem specific tuning of sigma point sets is introduced as well as a discussion of why this is necessary, and a new way of thinking about UKF systems in relation to the other two Kalman Filter methods. An Iterated UKF method is also introduced, similar to the smoothing iterates developed previously for the EKF. The performance of all of these methods is demonstrated using problem exemplars with the improvement of the contributed methods highlighted.
|
3 |
Accurate Localization Given Uncertain SensorsKramer, Jeffrey A 08 April 2010 (has links)
The necessity of accurate localization in mobile robotics is obvious - if a robot does not know where it is, it cannot navigate accurately to reach goal locations. Robots learn about their environment via sensors. Small robots require small, efficient, and, if they are to be deployed in large numbers, inexpensive sensors. The sensors used by robots to perceive the world are inherently inaccurate, providing noisy, erroneous data or even no data at all. Combined with estimation error due to imperfect modeling of the robot, there are many obstacles to successfully localizing in the world. Sensor fusion is used to overcome these difficulties - combining the available sensor data in order to derive a more accurate pose estimation for the robot.
In this thesis, we dissect and analyze a wide variety of sensor fusion algorithms, with the goal of using a set of inexpensive sensors in a suite to provide real-time localization for a robot given unknown sensor errors and malfunctions. The sensor fusion algorithms will fuse GPS, INS, compass and control inputs into a more accurate position. The filters discussed include a SPKF-PF (Sigma-Point Kalman Filter - Particle Filter), a MHSPKF (Multi-hypothesis Sigma-Point Kalman Filter), a FSPKF (Fuzzy Sigma-Point Kalman Filter), a DFSPKF (Double Fuzzy Sigma-Point Kalman Filter), an EKF (Extended Kalman Filter), a MHEKF (Multi-hypothesis Extended Kalman Filter), a FEKF (Fuzzy Extended Kalman Filter), and a standard SIS PF (Sequential Importance Sampling Particle Filter).
Our goal in this thesis is to provide a toolbox of algorithms for a researcher, presented in a concise manner. I will also simultaneously provide a solution to a difficult sensor fusion problem - an algorithm that is of low computational complexity (< O(n³)), real-time, accurate (equal in or more accurate than a DGPS (differential GPS) given lower quality sensors), and robust - able to provide a useful localization solution even when sensors are faulty or inaccurate. The goal is to find a locus between power requirements, computational complexity and chip requirements and accuracy/robustness that provides the best of breed for small robots with inaccurate sensors. While other fusion algorithms work well, the Sigma Point Kalman filter solves this problem best, providing accurate localization and fast response, while the Fuzzy EKF is a close second in the shorter sample with less error, and the Sigma-Point Kalman Particle Filter does very well in a longer example with more error. Fuzzy control is also discussed, especially the reason for its applicability and its use in sensor fusion.
|
4 |
Contributions au traitement spatio-temporel fondé sur un modèle autorégressif vectoriel des interférences pour améliorer la détection de petites cibles lentes dans un environnement de fouillis hétérogène Gaussien et non Gaussien / Contribution to space-time adaptive processing based on multichannel autoregressive modelling of interferences to improve small and slow target’s detection in non homogenous Gaussian and non-Gaussian clutterPetitjean, Julien 06 December 2010 (has links)
Cette thèse traite du traitement adaptatif spatio-temporel dans le domaine radar. Pour augmenter les performances en détection, cette approche consiste à maximiser le rapport entre la puissance de la cible et celle des interférences, à savoir le bruit thermique et le fouillis. De nombreuses variantes de cet algorithme existent, une d’entre elles est fondée sur une modélisation autorégressive vectorielle des interférences. Sa principale difficulté réside dans l’estimation des matrices autorégressives à partir des données d’entrainement ; ce point constitue l’axe de notre travail de recherche. En particulier, notre contribution porte sur deux aspects. D’une part, dans le cas où l’on suppose que le bruit thermique est négligeable devant le fouillis non gaussien, les matrices autorégressives sont estimées en utilisant la méthode du point fixe. Ainsi, l’algorithme est robuste à la distribution non gaussienne du fouillis.D’autre part, nous proposons une nouvelle modélisation des interférences différenciant le bruit thermique et le fouillis : le fouillis est considéré comme un processus autorégressif vectoriel, gaussien et perturbé par le bruit blanc thermique. Ainsi, de nouvelles techniques d'estimation des matrices autorégressives sont proposées. La première est une estimation aveugle par bloc reposant sur la technique à erreurs dans les variables. Ainsi, l’estimation des matrices autorégressives reste robuste pour un rapport faible entre la puissance de la cible et celle du fouillis (< 5 dB). Ensuite, des méthodes récursives ont été développées. Elles sont fondées sur des approches du type Kalman : filtrage de Kalman étendu et filtrage par sigma point (UKF et CDKF), ainsi que sur le filtre H∞.Une étude comparative sur des données synthétiques et réelles, avec un fouillis gaussien ou non gaussien, est menée pour révéler la pertinence des différents estimateurs en terme de probabilité de détection. / This dissertation deals with space-time adaptive processing in the radar’s field. To improve the detection’s performances, this approach consists in maximizing the ratio between the target’s power and the interference’s one, i.e. the thermal noise and the clutter. Several variants of its algorithm exist, one of them is based on multichannel autoregressive modelling of interferences. Its main problem lies in the estimation of autoregressive matrices with training data and guides our research’s work. Especially, our contribution is twofold.On the one hand, when thermal noise is considered negligible, autoregressive matrices are estimated with fixed point method. Thus, the algorithm is robust against non-gaussian clutter.On the other hand, a new modelling of interferences is proposed. The clutter and thermal noise are separated : the clutter is considered as a multichannel autoregressive process which is Gaussian and disturbed by the white thermal noise. Thus, new estimation’s algorithms are developed. The first one is a blind estimation based on errors in variable methods. Then, recursive approaches are proposed and used extension of Kalman filter : the extended Kalman filter and the Sigma Point Kalman filter (UKF and CDKF), and the H∞ filter. A comparative study on synthetic and real data with Gausian and non Gaussian clutter is carried out to show the relevance of the different algorithms about detection’s probability.
|
5 |
Implementierung eines Mono-Kamera-SLAM Verfahrens zur visuell gestützten Navigation und Steuerung eines autonomen LuftschiffesLange, Sven 21 February 2008 (has links) (PDF)
Kamerabasierte Verfahren zur Steuerung autonomer mobiler Roboter wurden in den letzten Jahren immer populärer. In dieser Arbeit wird der Einsatz eines Stereokamerasystems und eines Mono-Kamera-SLAM Verfahrens hinsichtlich der Unterstützung der Navigation eines autonomen Luftschiffes untersucht. Mit Hilfe von Sensordaten aus IMU, GPS und Kamera wird eine Positionsschätzung über eine Sensorfusion mit Hilfe des Extended und des Unscented Kalman Filters durchgeführt.
|
6 |
Implementierung eines Mono-Kamera-SLAM Verfahrens zur visuell gestützten Navigation und Steuerung eines autonomen LuftschiffesLange, Sven 09 December 2007 (has links)
Kamerabasierte Verfahren zur Steuerung autonomer mobiler Roboter wurden in den letzten Jahren immer populärer. In dieser Arbeit wird der Einsatz eines Stereokamerasystems und eines Mono-Kamera-SLAM Verfahrens hinsichtlich der Unterstützung der Navigation eines autonomen Luftschiffes untersucht. Mit Hilfe von Sensordaten aus IMU, GPS und Kamera wird eine Positionsschätzung über eine Sensorfusion mit Hilfe des Extended und des Unscented Kalman Filters durchgeführt.
|
7 |
Développement d’un estimateur d’état non linéaire embarqué pour le pilotage-guidage robuste d’un micro-drone en milieu complexe / Nonlinear state estimation for guidance and navigation of unmanned aerial vehicles flying in a complex environnementCondomines, Jean-Philippe 05 February 2015 (has links)
Le travail effectué au cours de cette thèse tente d’apporter une solution algorithmique à la problématique de l’estimation de l’état d’un mini-drone en vol qui soit compatible avec les exigences d’embarquabilité inhérentes au système. Il a été orienté vers les méthodes d’estimation non linéaire à base de modèles. Les algorithmes d’estimation, d’état ou de paramètres, et de contrôle apparaissent primordiaux, lorsque la technologie des capteurs et des actionneurs, pour des raisons de coût et d’encombrement essentiellement, ne permet pas de disposer de capacités illimitées. Ceci est particulièrement vrai dans le cas des micro- et des mini-drones. L’estimation permet de fusionner en temps réel les informations imparfaites provenant des différents capteurs et de fournir une estimation, par exemple de l’état du drone (orientation, vitesse, position) au calculateur embarqué où sont implémentés les algorithmes de commande de l’engin. Ce contrôle de l’appareil doit garantir sa stabilité en boucle fermée quelque soit l’ordre de consigne fourni directement par l’opérateur ou par tout système automatique de gestion du vol et assurer que celle-ci soit correctement recopiée. Estimation et commande participent donc grandement au succès de toute mission. Une dimension extrêmement importante qui a conditionné les travaux entrepris tout au long de cette thèse concerne la capacité d’emport des mini-drones que nous considérons. En effet, celle-ci, relativement limitée, et couplée à la volonté de ne pas grever les budgets de développement de tout mini-drone, autorise uniquement l’intégration de matériels dits bas-coûts. Malgré les progrès significatifs de la miniaturisation et l’augmentation continuelle des capacités de calcul embarqué (loi de Moore), les mini-drones d’intérêt considérés ici n’embarquent donc que des capteurs aux performances limitées dans un contexte où cette catégorie d’engins autonomes est amenée à être de plus en plus fréquemment exploitée pour remplir des missions elles-mêmes toujours plus nombreuses. Celles-ci requièrent notamment que de tels drones puissent de manière sûre s’insérer et partager l’espace aérien civil moyennant le passage d’une certification de leur vol au même titre que pour les avions de transport des différentes compagnies aériennes. Dès lors, face à cet enjeu de sécurisation des vols de mini-drones, la consolidation de la connaissance de l’état de l’aéronef par des techniques d’estimation devient un tâche essentielle pour en assurer le contrôle, y compris en situations dégradées (pannes capteurs, perte occasionnelle de signaux, bruit et perturbations environnantes, imperfections des moyens de mesure, etc). Tenter de répondre à cet enjeu conduit naturellement le chercheur à s’attaquer à des problèmes relativement nouveaux, en tout cas pas forcément aussi proches de ceux qui se posent dans le secteur de l’aéronautique civile ou militaire, où le système avionique est sans commune mesure avec celui sur lequel nous avons travaillé dans cette thèse. Ce travail à tout d’abord consisté à définir une modélisation dynamique descriptive du vol des mini-drones étudiés, suffisamment générique pour être appliquée à différents types de minidrones (voilure fixe, multirotor, etc). Par la suite, deux algorithmes d’estimation originaux, dénommés IUKF et -IUKF, exploitant ce modèle, ont été développés avant d’être testés en simulation puis sur données réelles pour la version -IUKF. Ces deux méthodes transposent le cadre générique des observateurs invariants au cas de l’estimation non linéaire de l’état d’un système dynamique par une technique de type Unscented Kalman Filter (UKF) qui appartient à la classe plus générale des algorithmes de filtrage non linéaire de type Sigma Point (SP). La solution proposée garantit un plus grand domaine de convergence de l’estimé que les techniques plus traditionnelles. / This thesis presents the study of an algorithmic solution for state estimation problem of unmanned aerial vehicles, or UAVs. The necessary resort to multiple miniaturized low-cost and low-performance sensors integrated into mini-RPAS, which are obviously subjected to hardspace requirements or electrical power consumption constraints, has led to an important interest to design nonlinear observers for data fusion, unmeasured systems state estimation and/or flight path reconstruction. Exploiting the capabilities of nonlinear observers allows, by generating consolidated signals, to extend the way mini-RPAS can be controlled while enhancing their intrinsic flight handling qualities.That is why numerous recent research works related to RPAS certification and integration into civil airspace deal with the interest of highly robust estimation algorithm. Therefore, the development of reliable and performant aided-INS for many nonlinear dynamic systems is an important research topic and a major concern in the aerospace engineering community. First, we have proposed a novel approach for nonlinear state estimation, named pi-IUKF (Invariant Unscented Kalman Filter), which is based on both invariant filter estimation and UKF theoretical principles. Several research works on nonlinear invariant observers have been led and provide a geometrical-based constructive method for designing filters dedicated to nonlinear state estimation problems while preserving the physical properties and systems symmetries. The general invariant observer guarantees a straightforward form of the nonlinear estimation error dynamics whose properties are remarkable. The developed pi-IUKF estimator suggests a systematic approach to determine all the symmetry-preserving correction terms, associated with a nonlinear state-space representation used for prediction, without requiring any linearization of the differential equations. The exploitation of the UKF principles within the invariant framework has required the definition of a compatibility condition on the observation equations. As a first result, the estimated covariance matrices of the pi-IUKF converge to constant values due to the symmetry-preserving property provided by the nonlinear invariant estimation theory. The designed pi-IUKF method has been successfully applied to some relevant practical problems such as the estimation of Attitude and Heading for aerial vehicles using low-cost AH reference systems (i.e., inertial/magnetic sensors characterized by low performances). In a second part, the developed methodology is used in the case of a mini-RPAS equipped with an aided Inertial Navigation System (INS) which leads to augment the nonlinear state space representation with both velocity and position differential equations. All the measurements are provided on board by a set of low-cost and low-performance sensors (accelerometers, gyrometers, magnetometers, barometer and even Global Positioning System (GPS)). Our designed pi-IUKF estimation algorithm is described and its performances are evaluated by exploiting successfully real flight test data. Indeed, the whole approach has been implemented onboard using a data logger based on the well-known Paparazzi system. The results show promising perspectives and demonstrate that nonlinear state estimation converges on a much bigger set of trajectories than for more traditional approaches.
|
Page generated in 0.0542 seconds