• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 7
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 37
  • 26
  • 19
  • 16
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An investigation into the use of kriging for indoor Wi-Fi received signal strength estimation / Petrus Jacobus Joubert

Joubert, Petrus Jacobus January 2014 (has links)
Kriging is proposed as a tool for Wi-Fi signal strength estimation for complex indoor environments. This proposal is based on two studies suggesting that kriging might be suitable for this application. Both of these studies have shortcomings in supporting this proposal, but their results encourage a more in depth investigation into this. Even though kriging is a geostatistical method developed for geographical interpolation, it has been used successfully in a wide range of other applications as well. This further suggests that kriging might be a versatile method to overcome some of the difficul- ties of existing signal strength estimation methods. Two main types of signal strength estimation are deterministic methods and empirical methods. Deterministic methods are generally very complex and requires input parameters that are difficult to obtain. Empirical methods are known to have low accuracy which makes them unreliable for practical use. Three main investigations are presented in order to evaluate the use of kriging for this application. A sampling plan is proposed as part of a generic application protocol for the practical use of kriging for Wi-Fi signal strength. It is concluded that kriging can be conffidently used as an estimation technique for Wi-Fi signal strength in complex indoor environments. Kriging is recommended for practical applications, especially where in- sufficient information is available about a building or where time consuming site surveys are not feasible. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
12

An investigation into the use of kriging for indoor Wi-Fi received signal strength estimation / Petrus Jacobus Joubert

Joubert, Petrus Jacobus January 2014 (has links)
Kriging is proposed as a tool for Wi-Fi signal strength estimation for complex indoor environments. This proposal is based on two studies suggesting that kriging might be suitable for this application. Both of these studies have shortcomings in supporting this proposal, but their results encourage a more in depth investigation into this. Even though kriging is a geostatistical method developed for geographical interpolation, it has been used successfully in a wide range of other applications as well. This further suggests that kriging might be a versatile method to overcome some of the difficul- ties of existing signal strength estimation methods. Two main types of signal strength estimation are deterministic methods and empirical methods. Deterministic methods are generally very complex and requires input parameters that are difficult to obtain. Empirical methods are known to have low accuracy which makes them unreliable for practical use. Three main investigations are presented in order to evaluate the use of kriging for this application. A sampling plan is proposed as part of a generic application protocol for the practical use of kriging for Wi-Fi signal strength. It is concluded that kriging can be conffidently used as an estimation technique for Wi-Fi signal strength in complex indoor environments. Kriging is recommended for practical applications, especially where in- sufficient information is available about a building or where time consuming site surveys are not feasible. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
13

On the Performance of In-Body RF Localization Techniques

Swar, Pranay P 01 June 2012 (has links)
"Localization inside the human body using Radio Frequency (RF) transmission is gaining importance in a number of applications such as Wireless Capsule Endoscopy. The accuracy of RF localization depends on the technology adopted for this purpose. The two most common RF localization technologies use Received Signal Strength (RSS) and Time-Of-Arrival (TOA). This research first provides bounds for accuracy of localization of a Endoscopy capsule inside the human body as it moves through the gastro-Intestinal track with and without randomness in transmit power using RSS based localization with a triangulation algorithm. It is observed that in spite of presence of a large number of anchor nodes; the localization error is still in range of few cm, which is quite high; hence we resort to TOA based localization. Due to lack of a widely accepted model for TOA based localization inside human body we use a computational technique for simulation inside and around the human body, named Finite Difference Time Domain (FDTD). We first show that our proprietary FDTD simulation software shows acceptable results when compared with real empirical measurements using a vector network analyzer. We then show that, the FDTD method, which has been used extensively in all kinds of electromagnetic modeling due to its versatility and simplicity, suffers seriously because of its demanding requirement on memory storage and computation time, which is due to its inherently recursive nature and the need for absorbing boundary conditions. In this research we suggest a novel computationally efficient technique for simulation using FDTD by considering FDTD as a Linear Time Invariant (LTI) system. Then we use the software to simulate the TOA of the narrowband and wideband signals propagated inside the human body for RF localization to compare the accuracies of the two using this method. "
14

An Application for the Detection of Signal Strength for ESP8266 Position

Pourshirazi, Aida 01 July 2017 (has links)
Sinkholes are hazardous to buildings and their occupants, so a sensing device that can monitor underground changes is vital. Void Technology, developed in the Research and Development Center at Western Kentucky University, is creating a device that can improve monitoring for any movement underground. This device, created by Void Technology, is equipped with ESP8266, which is a Wi-Fi module that can send its information to the router in a wireless network. The focus of this thesis is on designing and developing an IOS framework application to show the signal strength capabilities in different buildings to find the optimum placement of the Void Technology devices. Each building, based on various construction materials, had different attenuations that could cause signal loss from the application to the ESP82266. The optimum place was found with this designed application. From this test experiment, it can be concluded that the application can show the signal strength based dBm. Thus, this new application is cost-effective as well as user friendly and which can help both the installer and homeowner to find the best position for installing The Void Technology with optimum signal strength.
15

Detection of erosion/deposition depth using a low frequency passive radio frequency identification (rfid) technology

Moustakidis, Iordanis Vlasios 01 December 2012 (has links)
This thesis presents an experimental study both in the laboratory and field to develop and test a method for continuously measuring and monitoring scour using an automated identification technology known as Radio Frequency Identification (RFID). RFID systems consist of three main components, namely (a) the reader which controls the system, (b) the transponder (derived from transmitter/responder) that transmits data to the reader and (c) the excitation antenna that allows the communication between the reader and the transponder. The study provides an insight into the RFID technology and develops the framework for using this technology to eventually address two central themes in river mechanics and sediment transport; (a) the determination of the active layer thickness and (b) the scour/deposition depth around a hydraulic structure. In particular, this study develops the methodology for relating the signal strength of a radio frequency (RF) device with the distance between an excitation antenna and the RF device. The experiments presented herein are classified into two main groups, (1) the laboratory and (2) the RF signal vs. the detection distance experiments (field experiments). The laboratory experiments were designed to understand the effect of key RFID parameters (e.g., transponder orientation with respect to the excitation antenna plane, maximum antenna-transponder detection distance), measured in terms of the transponder return RF signal strength for various antenna-transponder distances, transponder orientations with respect to the excitation antenna plane and different mediums in between the excitation antenna and the transponder, on the overall performance of the RFID system. On the other hand, the RF signal vs. the detection distance experiments were based on the results obtained during the laboratory experiments and focused on developing calibration curves by relating the transponder return RF signal strength with the distance between the excitation antenna and a transponder. The laboratory results show that the dominant RFID parameters affecting the system performance are (a) the transponder orientation towards the excitation antenna plane and (b) the medium type in between the excitation antenna and the transponder. The differences in reading distances were attributed to the transponder inner antenna type, while the effect of the medium was related with the void ratio, where higher porosity materials have, less RF signal strength decay. The parameter that governs the RF signal strength decay was found to be the distance between the excitation antenna and the transponder (erosion process experiments). The RF signal strength decays almost linearly with distance, while the rate of the RF signal strength decay is controlled by the material type in between the excitation antenna and the transponder (deposition process experiments). The RF signal vs. the detection distance experiments demonstrate that the reading distance of the RFID system can be significantly increased by using a custom made excitation antenna. The custom made excitation antenna not only increases the reading distance between the antenna and the transponder to nearly 20 ft., but also allows the user to manipulate the excitation antenna's shape and size to meet the specific landscape requirements at the monitoring site.
16

Analysis and Optimization of Empirical Path Loss Models and Shadowing Effects for the Tampa Bay Area in the 2.6 GHz Band

Costa, Julio C 21 March 2008 (has links)
This thesis analyzes the wireless propagation modeling of a 2.6 GHz band channel around the Tampa Bay area. Different empirical models are compared against measured data, and an adapted model, specific for the Tampa Bay area, is presented that builds on the accuracy of existing models. The effects of the propagation characteristics along bridges are also discussed, and a two-slope model is presented. The proposed models are based on a simple linear regression method, and statistical tests are evaluated for reliability thereof. The analysis also investigates the statistical properties of shadowing effects imposed on the wireless channel. The spatial correlation properties of shadowing effects are investigated in detail, and an extension of existing correlation models for shadowing effects is suggested where the correlation properties are studied in different distance ranges rather than the whole service coverage area.
17

Using Enhanced Weighted Voronoi Diagram for Mobile Service Positioning System

Tsai, Yi-Chun 05 September 2005 (has links)
The objective of this thesis is to design a mobile positioning system on the premise that low system complexity and less modification of components of Mobile Communication System to improve the possibility that adopted by service provider. Therefore we propose a Mobile Service Positioning System for Cellular Mobile Communication System. It works based on location information of base station and mutual relations of signal strength of base stations received by mobile phone. We adjust the environment factor upon different path loss caused by different geographical feature. And then we perform EWVD Algorithm to estimate the area where mobile phone locates in. Eventually, we obtain a Mobile Positioning System which has properties: lower building cost, smaller locating area, and faster response time.
18

Coupled passive resonant circuits as battery-free wireless sensors

Pasupathy, Praveenkumar 24 January 2011 (has links)
Detection and monitoring of the damage created by the corrosion of the steel reinforcement in concrete structures is a challenging and multidisciplinary problem. Economical monitoring strategy that is long-term and nondestructive requires low-cost, battery-free, wireless sensors. Our Electronic Structural Surveillance (ESS) platform uses battery-free passive resonant circuit (tag) as a sensor. The tag is magnetically coupled to an external reader coil. It is interrogated/read remotely in a non-contact (wireless) manner and the state of the sensor is determined from a swept frequency impedance measurement. When paired with the correct sensing element (transducer), the tag can be used for a variety of sensing applications for example, chemical & biochemical sensors. A circuit model of the reader and tag for such a universal battery-free wireless sensor platform is developed. The interaction between design and detection limit is examined. The dependence of the measured signal strength and read range on the various reader and tag circuit parameters is analyzed. Since the values of the circuit of the coils are dependent on their geometries, the effect of specific coil geometry is evaluated and design recommendations are made. / text
19

Energy-Efficient Mobile Communication with Cached Signal Maps

Holm, Rasmus January 2016 (has links)
Data communication over cellular networks is expensive for the mobile device in terms of energy, especially when the received signal strength (RSS) is low. The mobile device needs to amplify its transmission power to compensate for noise leading to an increased energy consumption. This thesis focuses on developing a RSS map for the third generation cellular technology (3G) which can be stored locally at the mobile device, and can be used for avoiding expensive communication in low RSS areas. The proposed signal map is created by crowdsourced information collected from several mobile devices. An application is used to collect data in the mobile device of the user and the application periodically sends the information back to the server which computes the total signal map. The signal map is composed of three levels of information: RSS information, data rate tests and estimated energy levels. The energy level categorizes the energy consumption of an area into "High", "Medium" or "Low" based on the RSS, data rate test information and an energy model developed from physical power measurements. The coarse categorization provides an estimation of the energy consumption at each location. It is evaluated by collecting data traces on a smartphone at different locations and comparing the measured energy consumption at each location to the energy level categories of the map. The RSS prediction is preliminarily evaluated by collecting new data along a path and comparing how well it correlates to the signal map. The evaluation in this thesis shows that with the current collected data there are not enough observations in the map to properly estimate the RSS. However, we believe that with more observations a more accurate evaluation could be done.
20

Proposta de sistem de localização em redes de sensores sem fio utilizando o teorema de Bayes

Ariza Olarte, Julieth Katherin January 2014 (has links)
O crescimento na utilização de redes de sensores sem fio possibilitou desenvolver melhorias para atender as necessidades da indústria de comunicação de dispositivos em função de diversas vantagens relacionadas a baixo custo, baixo consumo de energia, mobilidade, instalação e configuração de novos dispositivos, além disso, criar funcionalidades adicionais, como por exemplo, localização de engenheiros de campo e ativos em ambientes industriais. O protocolo WirelessHART é um padrão aberto de comunicação sem fio que busca atender a estes requisitos. Neste trabalho é apresentado o estudo e desenvolvimento de uma aplicação de localização de um objeto alvo através da rede WirelessHART. São analisados diferentes métodos para estimar a distância entre o objeto alvo e os outros elementos fixos da rede de sensores sem fio, algoritmos para computar dados e determinar a localização em um plano de coordenadas. O funcionamento do sistema proposto e o método de localização utilizado foram avaliados por meio de simulações e de testes práticos. Para as condições utilizadas de instalação dos dispositivos, foi possível obter um alcance na comunicação via rádio de mais de 100 m, o que permitiu determinar uma área de monitoração do sistema de cerca de 100 m x 100 m. Os resultados obtidos do erro de localização atingiram entre um 72% e 80% de estimativas de localização menores que a 5 metros. O trabalho abordou a criação e avaliação de critérios de escolha para obter conjuntos de três transmissores com probabilidade de erros menores do que 5 metros. A avaliação dos critérios é feita através da construção de uma tabela de probabilidade conjunta obtida a partir da aplicação da regra de Bayes em dados experimentais com erro de posicionamento conhecido. / The growth in the use of wireless sensor networks has made possible the development of improvements that meet the needs of the communication industry, including several devices with to low cost, low power consumption, mobility and ease of integration, installation and configuration advantages. Not only that but they also create additional functionalities, such as showing the location of field engineers who are assets in industrial environments. The WirelessHART protocol is an open standard for wireless communication that seeks to meet these qualities. This study presents a development of an application for the localization of a mobile device via the WirelessHART network. Different methods are analyzed to estimate the distance between the mobile node and the other fixed elements of the wireless sensor network, such as deployment topologies and algorithms, which are used to compute the data and determine the location in a coordinate plane. The operation of the proposed system and the location method were evaluated by means of simulations and practical tests. Due to the conditions used for the installation of the devices, it was possible to obtain a range of radio transmission over 100 m, which allowed to determine an area of monitoring system of about 100 m x 100 m. The results obtained from the error location reached between a 72% and 80% of the estimated localization that was less than 5 meters. The study addressed the establishment and evaluation of selection criteria for sets of three transmitters with probability of less than 5 meters errors. The evaluation criteria is done by constructing a joint probability table obtained from the application of Bayes rule in experimental data with known positioning error.

Page generated in 0.0621 seconds