• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Měření drah částic pomocí vnitřního detektoru ATLAS / Měření drah částic pomocí vnitřního detektoru ATLAS

Malina, Lukáš January 2014 (has links)
The SCT is a silicon strip detector forming a part of the tracking system of the ATLAS experiment at the LHC. The tracking performance of SCT is influenced by several fundamental effects: multiple scattering, Lorentz drift, energy loss variation, noise occupancy, and δ-ray production. In this thesis, the task requested by the SCT detector group has been performed. Clusters containing a δ-ray, which are assigned to a track were studied on data samples, specially prepared for this purpose. A correction to the affected cluster positions was successfully developed. The correction to δ-rays has been implemented into the ATHENA reconstruction framework and its performance was evaluated. A meaningful usage of correction for the detector alignment has been proposed. The ongoing detailed verification of the performance within the event reconstruction is partially beyond the scope of the thesis work.
2

Spectral Computed Tomography with a Photon-Counting Silicon-Strip Detector

Persson, Mats January 2016 (has links)
Computed tomography (CT) is a widely used medical imaging modality. By rotating an x-ray tube and an x-ray detector around the patient, a CT scanner is able to measure the x-ray transmission from all directions and form an image of the patient’s interior. CT scanners in clinical use today all use energy-integrating detectors, which measure the total incident energy for each measurement interval. A photon-counting detector, on the other hand, counts the number of incoming photons and can in addition measure the energy of each photon by comparing it to a number of energy thresholds. Using photon- counting detectors in computed tomography could lead to improved signal-to-noise ratio, higher spatial resolution and improved spectral imaging which allows better visualization of contrast agents and more reliable quantitative measurements. In this Thesis, the feasibility of using a photon-counting silicon-strip detector for CT is investigated. In the first part of the Thesis, the necessary performance requirements on such a detector is investigated in two different areas: the detector element homogeneity and the capability of handling high photon fluence rates. A metric of inhomogeneity is proposed and used in a simulation study to evaluate different inhomogeneity compensation methods. Also, the photon fluence rate incident on the detector in a scanner in clinical use today is investigated for different patient sizes through dose rate measurements together with simulations of transmission through patient im- ages. In the second part, a prototype detector module is used to demonstrate new applications enabled by the energy resolution of the detector. The ability to generate material-specific images of contrast agents with iodine and gadolinium is demonstrated. Furthermore, it is shown theoretically and ex- perimentally that interfaces in the image can be visualized by imaging the so-called nonlinear partial volume effect. The results suggest that the studied silicon-strip detector is a promising candidate for photon-counting CT.
3

A Segmented Silicon Strip Detector for Photon-Counting Spectral Computed Tomography

Xu, Cheng January 2012 (has links)
Spectral computed tomography with energy-resolving detectors has a potential to improve the detectability of images and correspondingly reduce the radiation dose to patients by extracting and properly using the energy information in the broad x-ray spectrum. A silicon photon-counting detector has been developed for spectral CT and it has successfully solved the problem of high photon flux in clinical CT applications by adopting the segmented detector structure and operating the detector in edge-on geometry. The detector was evaluated by both the simulation and measurements. The effects of energy loss and charge sharing on the energy response of this segmented silicon strip detector with different pixel sizes were investigated by Monte Carlo simulation and a comparison to pixelated CdTe detectors is presented. The validity of spherical approximations of initial charge cloud shape in silicon detectors was evaluated and a more accurate statistical model has been proposed. A photon-counting energy-resolving application specific integrated circuit (ASIC) developed for spectral CT was characterized extensively by electrical pulses, pulsed laser and real x-ray photons from both the synchrotron and an x-ray tube. It has been demonstrated that the ASIC performs as designed. A noise level of 1.09 keV RMS has been measured and a threshold dispersion of 0.89 keV RMS has been determined. The count rate performance of the ASIC in terms of count loss and energy resolution was evaluated by real x-rays and promising results have been obtained. The segmented silicon strip detector was evaluated using synchrotron radiation. An energy resolution of 16.1% has been determined with 22 keV photons in the lowest flux limit, which deteriorates to 21.5% at an input count rate of 100 Mcps mm−2. The fraction of charge shared events has been estimated and found to be 11.1% for 22 keV and 15.3% for 30 keV. A lower fraction of charge shared events and an improved energy resolution can be expected by applying a higher bias voltage to the detector. / <p>QC 20121123</p>
4

Improved Spatial Resolution in Segmented Silicon Strip Detectors / Förbättrad spatiell upplösning i segmenterade kiselstrippdetektorer

Bergström, Eva, Johansson, Ida January 2019 (has links)
Semiconductor detectors are attracting interest for use in photon-counting spectral computed tomography. In order to obtain a high spatial resolution, it is of interest to find the photon interaction position. In this work we investigate if machine learning can be used to obtain a sub-pixel spatial resolution in a photon-counting silicon strip detector with pixels of 10 µm. Simulated charge distributions from events in one, three, and seven positions in each of three pixels were investigated using the MATLAB® Classification Learner application to determine the correct interaction position. Different machine learning models were trained and tested in order to maximize performance. With pulses originating from one and seven positions within each pixel, the model was able to find the originating pixel with an accuracy of 100% and 88.9% respectively. Further, the correct position within a pixel was found with an accuracy of 54.0% and 29.4% using three and seven positions per pixel respectively. These results show the possibility of improving the spatial resolution with machine learning. / Halvledardetektorer är av stigande intresse inom forskning för användning i fotonräknande datortomografi med spektral upplösning. För att erhålla en hög spatiell upplösning är det av intresse att hitta fotonens ursprungliga interaktionsposition. I detta arbete undersöks om maskininlärning kan användas för att erhålla en spatiell upplösning på subpixelnivå i en fotonräknande kiselstrippdetektor med 10 µm pixlar. Laddningsfördelningen från simulerade interaktioner i en, tre, och sju positioner inom var och en av tre pixlar undersöktes med hjälp av applikationen Classification Learner i MATLAB® för att bestämma den korrekta interaktionspositionen. Olika maskininlärningsmodeller tränades och testades för att maximera prestandan. När pulser från en och sju positioner inom pixeln användes, kunde modellen hitta den korrekta pixeln med en noggrannhet på 100% respektive 88.9%. Vidare kunde den korrekta positionen inom en pixel bestämmas med en noggrannhet på 54.0% och 29.4% när tre respektive sju positioner inom varje pixel användes. Resultaten visar att det skulle vara möjligt att förbättra den spatiella upplösningen med hjälp av maskininlärning.
5

Mise en oeuvre d’un démonstrateur de caméra Compton pour l’imagerie en médecine nucléaire et pour le contrôle en temps réel de l’hadronthérapie à l’aide des rayonnements gamma prompts / Development of a time-of-flight Compton camera prototype for online control of ion therapy and medical imaging

Ley, Jean-Luc 14 December 2015 (has links)
L'hadronthérapie est l'une des modalités disponibles pour traiter le cancer. Cette modalité utilise des ions légers (protons, ions carbone) pour détruire les cellules cancéreuses. De telles particules ont une précision balistique de par leur trajectoire quasi-rectiligne, leur parcours fini et le profil de dose maximum en fin de parcours, ce qui permet, par rapport à la radiothérapie conventionnelle, d'épargner les tissus sains situés à côté, en aval et en amont de la tumeur. L'un des enjeux de l'assurance qualité de cette modalité est le contrôle du positionnement de la dose déposée par les ions dans le patient. Une possibilité pour effectuer ce contrôle est d'observer les gammas prompts émis lors des réactions nucléaires induites le long du parcours des ions dans le patient. Un prototype de caméra Compton, permettant théoriquement de maximiser l'efficacité de détection des gammas prompts, est actuellement développé dans une collaboration régionale. Mon travail de thèse s'est axé autour de cette caméra et plus particulièrement sur les points suivants : i) étudier par les simulations Monte Carlo le fonctionnement du prototype en cours de construction, notamment en regard des taux de comptage attendus sur les différents types d'accélérateurs en hadronthérapie, ii) mener des études de simulation sur l'utilisation de cette caméra en imagerie clinique, iii) caractériser les détecteurs silicium du diffuseur, iv) confronter les simulations entreprises sur la réponse de la caméra avec des mesures sur faisceau à l'aide d'un démonstrateur. Il résulte que le prototype de caméra Compton développé rend possible un contrôle de la localisation du dépôt de dose en protonthérapie à l'échelle d'un spot, à condition que l'intensité clinique du faisceau de protons soit diminuée d'un facteur 200 (intensité de 108 protons/s). Une application de la caméra Compton en médecine nucléaire semble réalisable avec l'utilisation de radioisotopes d'énergie supérieure à 300 keV. Ces premiers résultats doivent être confirmés par des simulations plus réalistes (cibles de PMMA homogènes et hétérogènes). Des tests avec l'intégration progressive de tous les éléments de la caméra vont avoir lieu courant 2016 / Hadrontherapy is one of the modalities available for treating cancer. This modality uses light ions (protons, carbon ions) to destroy cancer cells. Such particles have a ballistic accuracy thanks to their quasi-rectilinear trajectory, their path and the finished profile maximum dose in the end. Compared to conventional radiotherapy, this allows to spare the healthy tissue located adjacent downstream and upstream of the tumor. One of this modality’s quality assurance challenges is to control the positioning of the dose deposited by ions in the patient. One possibility to perform this control is to detect the prompt gammas emitted during nuclear reactions induced along the ion path in the patient. A Compton camera prototype, theoretically allowing to maximize the detection efficiency of the prompt gammas, is being developed under a regional collaboration. This camera was the main focus of my thesis, and particularly the following points : i) studying, throughout Monte Carlo simulations, the operation of the prototype in construction, particularly with respect to the expected counting rates on the different types of accelerators in hadrontherapy ii) conducting simulation studies on the use of this camera in clinical imaging, iii) characterising the silicon detectors (scatterer) iv) confronting Geant4 simulations on the camera’s response with measurements on the beam with the help of a demonstrator. As a result, the Compton camera prototype developed makes a control of the localization of the dose deposition in proton therapy to the scale of a spot possible, provided that the intensity of the clinical proton beam is reduced by a factor 200 (intensity of 108 protons / s). An application of the Compton camera in nuclear medicine seems to be attainable with the use of radioisotopes of an energy greater than 300 keV. These initial results must be confirmed by more realistic simulations (homogeneous and heterogeneous PMMA targets). Tests with the progressive integration of all camera elements will take place during 2016

Page generated in 0.092 seconds