• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 1
  • 1
  • Tagged with
  • 28
  • 18
  • 16
  • 14
  • 13
  • 11
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthesis of Polyhedral Oligomeric Silsesquioxane(POSS)-Based Shape Amphiphiles with Two Polymeric Tails of Symmetric or Asymmetric Compositions

Wang, Zhao 03 June 2013 (has links)
No description available.
12

Polycondensation of Bridged Amino-Functionalized Trialkoxysilanes.

Zhou, Guannan 07 May 2011 (has links) (PDF)
The reduction of CO2 emission has been a worldwide mission to resolve global warming predicament. Mesoporous silsesquioxanes, which stabilized by organobridges and has high content aminon absorption site, can serve as a potential CO2 adsorbent. Synthesis of such material is done by hydrolysis and polycondensation of trialkoxysilane. The fastest gelation was observed at reaction in the absence of acids or bases. However, addition of surfactant to the reaction mixture catalyzed formation of silsesquioxanes in acidic media. Obtained materials are strongly hydrophilic and possess a high thermostability. Study of particle size distributions showed that in all cases it was bimodal. The largest particles formed in basic media. Mesoporous silsesquioxanes were obtained from bridged alkyltrimethoxysilanes in the presence of surfactants.
13

Giant Molecular Shape Amphiphiles Based on Polyhedral Oligomeric Silsesquioxanes: Molecular Design, "Click" Synthesis and Self-Assembly

Li, Yiwen 29 August 2013 (has links)
No description available.
14

Optical and thermal characteristics of thin polymer and polhedral oligomeric silsesquioxane (POSS) filled polymer films

Karabiyik, Ufuk 06 June 2008 (has links)
Single wavelength ellipsometry measurements at Brewster's angle provide a powerful technique for characterizing ultrathin polymeric films. By conducting the experiments in different ambient media, multiple incident media (MIM) ellipsometry, simultaneous determinations of a film's thickness and refractive index are possible. Poly(tert-butyl acrylate) (PtBA) films serve as a model system for the simultaneous determination of thickness and refractive index (1.45 at 632 nm). Thickness measurements on films of variable thickness agree with X-ray reflectivity results. The method is also applicable to spincoated films where refractive indices of PtBA, polystyrene and poly(methyl methacrylate) are found to agree with literature values within experimental error. Likewise, MIM ellipsometry is utilized to simultaneously obtain the refractive indices and thicknesses of thin films of trimethylsilylcellulose (TMSC), regenerated cellulose, and cellulose nanocrystals where Langmuir-Blodgett (LB) films of TMSC serve as a model system. Ellipsometry measurements not only provide thickness and optical constants of thin films, but can also detect thermally induced structural changes like surface glass transition temperatures (Tg) and layer deformation in LB-films. Understanding the thermal properties of the polymer thin films is crucial for designing nanoscale coatings, where thermal properties are expected to differ from their corresponding bulk properties because of greater fractional free volume in thin films and residual stresses that remain from film preparation. Polyhedral oligomeric silsesquioxane (POSS) derivatives may be useful as a nanofiller in nanocomposite formulations to enhance thermal properties. As a model system, thin films of trisilanolphenyl-POSS (TPP) and two different molar mass PtBA were prepared as blends by Y-type Langmuir-Blodgett film deposition. For comparison, bulk blends were prepared by solution casting and the samples were characterized via differential scanning calorimetry (DSC). Our observations show that surface Tg is depressed relative to bulk Tg and that magnitude of depression is molar mass dependent for pure PtBA films. By adding TPP as a nanofiller both bulk and surface Tg increase. Whereas, bulk Tg shows comparable increases for both molar masses, the increase in surface Tg for higher molar mass PtBA is greater than for lower molar mass PtBA. These studies show that POSS can serve as a model nanofiller for controlling Tg in nanoscale coatings. / Ph. D.
15

Stability and Morphological Evolution in Polymer/Nanoparticle Bilayers and Blends Confined to Thin Film Geometries

Paul, Rituparna 13 September 2007 (has links)
Thin film bilayers and blends composed of polymers and nanoparticles are increasingly important for technological applications that range from space survivable coatings to novel drug delivery systems. Dewetting or spontaneous hole formation in amorphous polymer films and phase separation in multicomponent polymer films can hinder the stability of these systems at elevated temperatures. Hence, fundamental understanding of dewetting and phase separation in polymer/nanoparticle bilayer and blend films is crucial for controlling transport and thermomechanical properties and surface morphologies of these systems. This dissertation provides studies on morphological evolution driven by phase separation and/or dewetting in model polymer/nanoparticle thin film bilayers and blends at elevated temperatures. Morphological evolution in dewetting bilayers of poly(t-butyl acrylate) (PtBA) or polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP) is explored at elevated temperatures. The results demonstrate unique dewetting morphologies in both PtBA/TPP and PS/TPP bilayers that are significantly different from those typically observed in dewetting polymer/polymer bilayers. Upon annealing the PtBA/TPP bilayers at 95°C, a two-step dewetting process is observed. PtBA immediately diffuses into the upper TPP layer leading to hole formation and subsequently the holes merge to form interconnected rim structures in the upper TPP layer. Dewetting of both the TPP and PtBA layers at longer annealing times leads to the evolution of scattered holes containing TPP-rich, fractal aggregates. The fractal dimensions of the TPP-rich, fractal aggregates are ~2.2 suggesting fractal pattern formation via cluster-cluster aggregation. Dewetting in PS/TPP bilayers also proceeds via a two-step process; however, the observed dewetting morphologies are dramatically different from those observed in PtBA/TPP bilayers. Cracks immediately form in the upper TPP layer during annealing of PS/TPP bilayers at 200°C. With increasing annealing times, the cracks in the TPP layer act as nucleation sites for dewetting and aggregation of the TPP layer and subsequent dewetting of the underlying PS layer. Complete dewetting of both the TPP and PS layers results in the formation of TPP encapsulated PS droplets. Phase separation in PtBA/TPP thin film blends is investigated as functions of annealing temperature and time. The PtBA/TPP thin film blend system exhibits an upper critical solution temperature (LCST) phase diagram with a critical composition and temperature of 60 wt% PtBA and ~70°C, respectively. Spinodal decomposition (SD) is observed for 60 wt% PtBA blend films and off-critical SD is seen for 58 and 62 wt% PtBA blend films. The temporal evolution of SD in 60 wt% PtBA blend films is also explored. Power law scaling for the characteristic wavevector with time (q ~ t^n with n = -1/4 to -1/3) during the early stages of phase separation yields to domain pinning at the later stages for films annealed at 75, 85, and 95°C. In contrast, domain growth is instantly pinned for films annealed at 105°C. Our work provides an important first step towards understanding how nanoparticles affect polymer thin film stability and this knowledge may be utilized to fabricate surfaces with tunable morphologies via controlled dewetting and/or phase separation. / Ph. D.
16

Phase and Rheological Behavior of Langmuir Films at the Air/Water Interface: Polyhederal Oligomeric Silsesquioxanes (POSS), POSS/Polymer Blends, and Magnetic Nanoparticles

Yin, Wen 12 June 2009 (has links)
For over a century, Langmuir films have served as excellent two-dimensional model systems for studying the conformation and ordering of amphiphilic molecules at the air/water (A/W) interface. With the equipment of Wilhelmy plate technique, Brewster angle microscopy (BAM), and surface light scattering (SLS), the interfacial phase and rheological behavior of Langmuir films can be investigated. In this dissertation, these techniques are employed to examine Langmuir films of polyhedral oligomeric silsesquioxane (POSS), polymer blends, and magnetic nanoparticles (MNPs). In a first time, SLS is employed to study POSS molecules. The interfacial rheological properties of trisilanolisobutyl-POSS (TiBuP) indicate that TiBuP forms a viscoelastic Langmuir film that is almost perfectly elastic in the monolayer state with a maximum dynamic dilational elasticity of around 50 mNâ m-1 prior to film collapse. This result suggests that TiBuP can serve as model nanofiller with polymers. As an interesting next step, blends of TiBuP and polydimethylsiloxane (PDMS) with different compositions are examined via surface pressure (surface pressureâ surface area occupied per molecule (A) isotherms and SLS. The results show that TiBuP, with its attendant water, serves as a plasticizer and lowers the dilational modulus of the films at low surface pressure. As surface pressure increases, composition dependent behavior occurs. Around the collapse pressure of PDMS, the TiBuP component is able to form networks at the A/W interface as PDMS collapse into the upper layer. Blends of non-amphiphilic octaisobutyl-POSS (OiBuP) and PDMS are also studied as an interesting comparison to TiBuP/PDMS blends. In these blends, OiBuP serves as a filler and reinforces the blends prior to the collapse of PDMS by forming "bridge" structure on top of PDMS monolayer. However, OiBuP is non-amphiphilic and fails to anchor PDMS chains to the A/W interface. Hence, OiBuP/PDMS blends exhibit negligible dilational viscoelasticity after the collapse of PDMS. Furthermore, the phase behavior of PDMS blended with a trisilanol-POSS derivative containing different substituents, trisilanolcyclopentyl-POSS (TCpP), is also investigated via the Wilhelmy plate technique and BAM. These TCpP/PDMS blends exhibit dramatically different phase behavior and morphological features from previously studied POSS/PDMS blends, showing that the organic substituents on trisilanol-POSS have considerable impact on the phase behavior of POSS/PDMS blends. The interfacial rheological behavior of tricarboxylic acid terminated PDMS (PDMS-Stabilizer) and PDMS stabilized MNPs are investigated and compared with "regular" PDMS containing non-polar end groups. The tricarboxylic acid end group of the PDMS-Stabilizer leads to a different collapse mechanism. The PDMS stabilized MNPs exhibit viscoelastic behavior that is similar to PDMS showing all the tricarboxylic acid end groups are bound to the magnetite cores. Studying the interfacial behavior of different Langmuir films at the A/W interface provides us insight into the impact of molecule-molecule and molecule-subphase interactions on film morphology and rheology. These results are able to serve as important guides for designing surface films with preferred morphological and mechanical properties. / Ph. D.
17

Polyhedral oligomeric silsesquioxanes in catalysis and photoluminescence applications

Vautravers, Nicolas R. January 2009 (has links)
Cubic Polyhedral Oligomeric SilSesquioxanes (POSS) of general formula Si₈O₁₂R₈ (R = alkenyl, alkoxy, aryl, hydrogen...) have found applications in various fields ranging from biology to chemistry. Besides the advantage of presenting the characteristic dendritic globular shape at low generation, these three-dimensional molecules, easily modified by organic or inorganic reactions, quickly exhibit multiple end groups at their periphery, thus featuring attractive properties in catalysis and photoluminescence applications. Various dendritic POSS containing diphenylphosphine moieties at their periphery have been used in the methoxycarbonylation of ethene. Those with a -CH₂CH₂- spacer between the silicon and the phosphorus atoms (G0-8ethylPPh₂ and G1-16ethylPPh₂) only produce methyl propanoate whilst a similar dendrimer with a -CH₂- spacer between Si and P (G1-16methylPPh₂) gives only copolymer. The effect of the molecular architecture is discussed in comparison with the selectivities observed when using small molecule analogues. A wide range of non dendritic monodentate phosphines has also been studied in this reaction showing that low steric bulk and high electron density favours polyketone formation. The poorly active, monodentate SemiEsphos phosphine has been turned into an active ligand for rhodium catalysed vinyl acetate hydroformylation by attachment to the periphery of a Polyhedral Oligomeric Silsesquioxane. Whilst some of these dendritic ligands have shown activity, others precipitated upon mixing with the rhodium precursor. Modelling studies correlating the experimental facts have shown that the former are more compact and rigid in comparison to the latter, which are more flexible and hence more prone to monodentate binding to rhodium and cross-linking. Grubbs cross metathesis has been used to functionalize octavinylsilsesquioxane with fluorescent vinylbiphenyl modified chromophores to design new hybrid organic-inorganic nanomaterials. Those macromolecules have been characterized by NMR, microanalyses, MALDI-TOF mass spectrometry and photoluminescence. This last method was shown to be an interesting tool in the analysis of the purity of the cube derivatives. Reduction of the peripheral 4`-vinylbiphenyl-3,5-dicarbaldehyde groups on a Polyhedral Oligomeric Silsesquioxane (POSS) with NaBH₄ or LiAlH₄ activates the fluorescence of this macromolecule by turning the aldehydic functions into primary alcohols providing novel optical sensors for reducing environments.
18

Synthèse et Caractérisation de POSS (Polyhedral Oligomeric SilSesquioxane) greffé POE. Application aux Systèmes Epoxy-Amine à base Aqueuse

Nguyen, Thi Bich Viet 17 December 2010 (has links) (PDF)
Ce travail de thèse porte sur la synthèse et la caractérisation d'une nouvelle classe de tensioactif hybride organiques/inorganiques POSS (Polyhedral Oligomeric SilSesquioxane) greffé poly(oxyde d'éthylène), désigné POSS-POE. Ces composés ont été utilisés comme agent tensioactif dans l'élaboration de formulations époxy-amine à base aqueuse. Parmi les différentes voies de synthèse des POSS-POE étudiées, la voie qui consiste à greffer la chaîne POE et les groupements hydrophobe par hydrosilylation de l'octa(diméthylsiloxy)-octasilsesquioxane (Q8M8H) a été privilégiée. En effet cette méthode nous a permis d'élaborer des POSS amphiphiles à balance hydrophile/hydrophobe facilement modulable. Les composés R7Q8M8-POE avec R (alkyle) de C5 à C8 et POE de 350 à 5000 g/mol ont été synthétisés et caractérisés par RMN 1H, 13C et 29Si. Des chaînes alkyle ramifiées ont été également testées comme hydrophobe afin d'évaluer l'influence de la ramification des groupements alkyle sur les propriétés des POSS POE. L'analyse des POSS POE par diffraction de rayons X aux grands angles (WAXD) a permis de mettre en évidence que les chaînes POE cristallisent selon la même structure cristalline que dans l'homopolymère POE. Même si les cages POSS sont exclues des lamelles cristallines, un ordre à courte distance entre les cages POSS avec un certain degré d'interdigitation entre les chaînes alkyle a pu être mis en évidence. Le degré d'organisation des cages POSS dépend de la longueur de la chaîne POE. La stabilité thermique des POSS POE sous air et sous azote a été étudiée par analyse thermogravimétrique (ATG). Sous azote, les cubes R7Q8M8 ont tendance à augmenter la stabilité thermique des chaînes POE de faible masse molaire (350 g/mol) mais ont un effet déstabilisant dans le cas des chaînes POE plus longues (> 350 g/mol). Sous air, les POSS POE les plus stables présentent une chaîne alkyle hydrophobe en C6. La ramification des chaînes alkyle a un effet négatif sur la stabilité thermique. Le comportement associatif des POSS POE dans l'eau a été étudié par viscosimétrie et par mesure de solubilisation de molécule sonde hydrophobe. La formation d'agrégats micellaires à partir d'une concentration comprise entre 10-4 et 4x10-4 mol/L, selon la longueur des chaînes POE et des groupements hydrophobes, a été mise en évidence. Les propriétés émulsifiantes de ces POSS POE vis-à-vis d'un prépolymère DGEBA sont comparables à un tensioactif non ionique conventionnel nonylphénoxylpolyéthoxyéthanol. Un système époxy amine à base aqueuse incorporant ces unités POSS POE a été développé. Les films réticulés obtenus présentent de bonnes propriétés thermiques et une hydrophilie de la surface nettement inférieure en comparaison des films préparés à partir de l'émulsifiant conventionnel.
19

Mesoporous Adsorbents for Perfluorinated Compounds

Lotsi, Bertha 01 May 2020 (has links)
Effective adsorbents for polyfluorinated compounds (PFCs) were successfully prepared. And they were tested in the adsorption of perfluorooctanoic and perfluorooctanesulfonic acids. Bridged silsesquioxanes containing secondary and tertiary amino groups were synthesized by sol-gel condensation of bis[3-(trimethoxysilyl)propyl]amine and bis[3-(methylamino)propyl]-trimethoxysilane in acidic media with surfactants. Obtained materials are mesoporous with a high BET surface area. They combine high structural stability with a high concentration of surface amino groups serving as adsorption sites. Batch adsorption tests demonstrated their extremely high adsorption capacity on PFCs: in some experiments, it reached up to 88% of the adsorbent weight. Adsorption of PFCs changed the surfaces of the adsorbent nanoparticles from hydrophilic to hydrophobic thus providing their agglomeration and floatability. Column tests showed fast adsorption of PFCs even at high concentrations and high flow rates. Obtained results can be used in the development of an effective filtration device for clean-up of water contaminated by PFCs.
20

Study on RAFT polymerization and nano-structured hybrid system of POSS macromers

Deng, Yuanming 08 June 2012 (has links) (PDF)
This work is generally aimed to synthesize POSS based BCPs via RAFT polymerization, to study their self-assembly behaviors, to research on the effect of POSS self-assembly structure on the bulk properties and to prepare nanostructured hybrid epoxy via self-assembly of POSS based copolymer. In Chapter1, We studied the RAFT polymerization of POSS macromers and capable to synthesize well defined POSS based BCPs with high POSS fraction and different topology such as AB,BAB and (BA)3. The vertex group and the morphology effect on thermo-mechanical properties of POSS based BCPs as well as the structure-property relationship was investigated. Dispersion RAFT polymerization in apolar solvent was applied and various aggregates with different morphology in Chapter2. Cooling induced reversible micelle formation and transition was found and the pathway selection in vesicle formation was investigated. Nano-construction of O/I hybrid epoxy materials based on POSS based copolymers was investigated in Chapter4. The effect of functional group content on miscibility of POSS based statistic copolymer and epoxy was investigated. A novel method to nanostructure epoxy hybrid involving self-assembly of POSS based BCPs in epoxy was presented. High homogeneity and well size/morphology control of core-corona structure containing rigid POSS core and soluble PMMA corona in networks were obtained.

Page generated in 0.0511 seconds