Spelling suggestions: "subject:"simpátricas"" "subject:"simpática""
1 |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa / Applications of statistical mechanics to sympatric speciation and aproximative inferenceRibeiro, Fabiano Lemes 19 June 2009 (has links)
Apresenta-se nesta tese os resultados de aplicações do formalismo da Mecânica Estatística em dois problemas independentes. O primeiro diz respeito a um modelo para Evolução do Acasalamento Preferencial no processo de Especiação Simpátrica; enquanto que o segundo refere-se ao desenvolvimento de um algoritmo de aprendizado por meio de Inferência Aproximativa. No problema biológico estudado, cada indivíduo em um modelo de agentes é composto por dois traços. Enquanto um é responsável pela ecologia do indivíduo, o outro dita uma aparência física descorrelacionada com a adaptabilidade. Esses traços são expressos por diferentes loci que estão ligados entre si por uma taxa de recombinação. O modelo inclui também a possibilidade de evolução da preferência sexual dos indivíduos. Foi construído para esse modelo um diagrama de fases no espaço dos parâmetros que descrevem o ambiente como, por exemplo, quantidades de recursos e deficiência do indivíduo híbrido. Foram encontradas três fases de equilíbrio: (i) emergência de Acasalamento Preferencial; (ii) extinção de um dos alelos do locus responsável pela ecologia e (iii) equilíbrio Hardy-Weinberg. Foi verificado que o acasalamento preferencial pode emergir ou mesmo ser perdido (e vice-versa) em resposta a mudanças no ambiente. Além disso, o sistema apresenta memória característica típica de transições de primeira ordem, o que permitiu a descrição desse sistema biológico por meio do arcabouço da Mecânica Estatística. Em relação à Inferência Aproximativa, está-se interessado na construção de um algoritmo de aprendizado supervisionado por meio da técnica de Propagação de Expectativas. Mais especificamente, pretende-se inferir os parâmetros que compõem um Perceptron Professor a partir do conjunto de pares - entradas e saídas - que formam o conjunto de dados disponíveis. A estimativa desses parâmetros será feita pela substituição de uma distribuição Posterior original, geralmente intratável, por uma distribuição aproximativa tratável. o algoritmo Propagação de Expectativas foi adotado para a atualização, passo a passo, dos termos que compõem essa distribuição aproximativa. Essa atualização deve ser repetida até que a convergência seja atingida. Utilizando o Teorema do Limite Central e o método de Cavidade, foi possível obter um algoritmo genérico e que apresentou desempenho bastante evidente em dois modelos estudados: o modelo do Perceptron Binário e o modelo do Perceptron Gaussiano, com desempenho ótimo em ambos os casos. / This thesis presents applications of the framework of Statistical Mechanics to two independent problems. The first corresponds to a computational model for the evolution of Assortative Mating in the Sympatric Speciation process; and the second a learning algorithm built by means of a Bayesian Inference approach. In the biological problem each individual in an agent-based model is composed of two traits. One trait, called the ecological trait, is directly related with the fitness; the other, called the marker trait, has no bearing on the fitness. The traits are determined by different loci which are linked by a recombination rate. There is also the possibility of evolution of mating preferences, which are inherited from the mother and subject to random variations. The study of the phase diagram in the spa e of parameters describing the environment (like carrying capacity and disruptive selection) reveals the existence of three phases: (i) assortative mating; (ii) extinction of one allele from ecological loci; and (iii) Hardy-Weinberg equilibrium. It was verifed that the assortative mating an emerge or even be lost (and vice-versa) acording with the environmental hanges. Moreover, the system shows memory of the initial condition, characterising a hysteresis. Hysteresis is the signature of first order phase transition, which allows the description of the system by means of the Statistical Mechanics framework. In relation to the Bayesian Inference, a supervised learning algorithm was constructed by means of the Expectation Propagation approach. The idea is to estimate the parameters which compose a Teacher Perceptron by the substitution of the original posterior distribution, intra table, by a tractable approximative distribution. The step-by-step update of the terms composing the approximative distribution was performed by using the Expectation Propagation algorithm. The update must be repeated until the convergence ocurrs. Using the Central Limit Theorem and the Cavity Approah, it was possible to get a generic algorithm that has shown a very good performance in two application scenarios: The Binary Perceptron Model and the Gaussian Perceptron Model.
|
2 |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa / Applications of statistical mechanics to sympatric speciation and aproximative inferenceFabiano Lemes Ribeiro 19 June 2009 (has links)
Apresenta-se nesta tese os resultados de aplicações do formalismo da Mecânica Estatística em dois problemas independentes. O primeiro diz respeito a um modelo para Evolução do Acasalamento Preferencial no processo de Especiação Simpátrica; enquanto que o segundo refere-se ao desenvolvimento de um algoritmo de aprendizado por meio de Inferência Aproximativa. No problema biológico estudado, cada indivíduo em um modelo de agentes é composto por dois traços. Enquanto um é responsável pela ecologia do indivíduo, o outro dita uma aparência física descorrelacionada com a adaptabilidade. Esses traços são expressos por diferentes loci que estão ligados entre si por uma taxa de recombinação. O modelo inclui também a possibilidade de evolução da preferência sexual dos indivíduos. Foi construído para esse modelo um diagrama de fases no espaço dos parâmetros que descrevem o ambiente como, por exemplo, quantidades de recursos e deficiência do indivíduo híbrido. Foram encontradas três fases de equilíbrio: (i) emergência de Acasalamento Preferencial; (ii) extinção de um dos alelos do locus responsável pela ecologia e (iii) equilíbrio Hardy-Weinberg. Foi verificado que o acasalamento preferencial pode emergir ou mesmo ser perdido (e vice-versa) em resposta a mudanças no ambiente. Além disso, o sistema apresenta memória característica típica de transições de primeira ordem, o que permitiu a descrição desse sistema biológico por meio do arcabouço da Mecânica Estatística. Em relação à Inferência Aproximativa, está-se interessado na construção de um algoritmo de aprendizado supervisionado por meio da técnica de Propagação de Expectativas. Mais especificamente, pretende-se inferir os parâmetros que compõem um Perceptron Professor a partir do conjunto de pares - entradas e saídas - que formam o conjunto de dados disponíveis. A estimativa desses parâmetros será feita pela substituição de uma distribuição Posterior original, geralmente intratável, por uma distribuição aproximativa tratável. o algoritmo Propagação de Expectativas foi adotado para a atualização, passo a passo, dos termos que compõem essa distribuição aproximativa. Essa atualização deve ser repetida até que a convergência seja atingida. Utilizando o Teorema do Limite Central e o método de Cavidade, foi possível obter um algoritmo genérico e que apresentou desempenho bastante evidente em dois modelos estudados: o modelo do Perceptron Binário e o modelo do Perceptron Gaussiano, com desempenho ótimo em ambos os casos. / This thesis presents applications of the framework of Statistical Mechanics to two independent problems. The first corresponds to a computational model for the evolution of Assortative Mating in the Sympatric Speciation process; and the second a learning algorithm built by means of a Bayesian Inference approach. In the biological problem each individual in an agent-based model is composed of two traits. One trait, called the ecological trait, is directly related with the fitness; the other, called the marker trait, has no bearing on the fitness. The traits are determined by different loci which are linked by a recombination rate. There is also the possibility of evolution of mating preferences, which are inherited from the mother and subject to random variations. The study of the phase diagram in the spa e of parameters describing the environment (like carrying capacity and disruptive selection) reveals the existence of three phases: (i) assortative mating; (ii) extinction of one allele from ecological loci; and (iii) Hardy-Weinberg equilibrium. It was verifed that the assortative mating an emerge or even be lost (and vice-versa) acording with the environmental hanges. Moreover, the system shows memory of the initial condition, characterising a hysteresis. Hysteresis is the signature of first order phase transition, which allows the description of the system by means of the Statistical Mechanics framework. In relation to the Bayesian Inference, a supervised learning algorithm was constructed by means of the Expectation Propagation approach. The idea is to estimate the parameters which compose a Teacher Perceptron by the substitution of the original posterior distribution, intra table, by a tractable approximative distribution. The step-by-step update of the terms composing the approximative distribution was performed by using the Expectation Propagation algorithm. The update must be repeated until the convergence ocurrs. Using the Central Limit Theorem and the Cavity Approah, it was possible to get a generic algorithm that has shown a very good performance in two application scenarios: The Binary Perceptron Model and the Gaussian Perceptron Model.
|
3 |
Especiação sem barreiras e padrões de diversidade / Speciation without barriers and diversity petternsAndrade, Elizabeth Machado Baptestini 15 August 2018 (has links)
Orientador: Marcus Aloizio Martinez de Aguiar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-15T21:06:55Z (GMT). No. of bitstreams: 1
Andrade_ElizabethMachadoBaptestini_D.pdf: 4491574 bytes, checksum: 117d970a1c273ecd6ef9533aa742bb0f (MD5)
Previous issue date: 2010 / Resumo: Nesse trabalho, estudamos doismecanismos de formação de espécies. No primeiro deles, consideramos um modelo espacial de especiação neutra totalmente probabilístico, sem barreiras geográficas ou interações ecológicas. A população evolui devido a influência de reprodução sexuada, mutações e recombinação. O modelo é baseado em acasalamento seletivo dependente de duas distâncias críticas, uma no espaço físico e outra no espaço dos genomas. Os vínculos introduzidos por essas duas distâncias permitem que a população se divida em grupos reprodutivamente isolados. Nossos resultados mostram que essa dinâmica gera padrões de diversidade consistentes com padrões observados na natureza, como distribuição de abundâncias do tipo log-normal, lei de potência para curvas espécie-área, taxas de especiação e extinção constantes e maior número de espécies para baixas dimensões.
No segundo, nós generalizamos um modelo de especiação simpátrica baseado em competição intraespecífica, proposto por Dieckmann e Doebeli. Nesse modelo, uma população assexuada, inicialmente idêntica, evolui por seleção direcional para um fenótipo ótimo, onde a competição intraespecífica induz à seleção disruptiva. Nós mostramos que a forma das funções de competição e distribuição de recursos afetam a probabilidade de dois fenótipos coexistirem. Nós desenvolvemos um modelo analítico e simulações computacionais e comparamos os resultados de ambas abordagens / Abstract: In this work, we have studied two different mechanisms of species formation. In the first one, we considered a probabilistic spatial neutral model of speciation, without physical barriers or any kind of ecological interaction. The population evolves under the combined influences of sexual reproduction, mutation and recombination. The model is based on assortative mating and it depends on two critical distances, one in the genetic space and one in the physical space. The constraints imposed by these two distances allow the population to split in reproductively separated groups. Our results show that this kind of dynamics creates patterns of biodiversity in agreement with observed data, like lognormal distributions of species abundance, power law species-area relationships, steady speciation and extinctions rates and more species in low dimensions.
In the second model, we generalized a sympatric speciation model based on intraspecific competition, proposed by Dieckmann and Doebeli. In that model, an assexual population, initially identical, evolves by directional selection to an optimal phenotype, where intraspecific competition induces disruptive selection. We show that the shape of the competition and carrying capacity kernels affects the likelihood of emergence of two coexisting phenotypes. We developed an analytical and a computational model and we compared the results of both approaches / Doutorado / Física da Matéria Condensada / Doutora em Ciências
|
Page generated in 0.0535 seconds