• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identifying Taphonomic Distribution Patterns at the Gray Fossil Site

Haugrud, Shawn 01 May 2023 (has links) (PDF)
Since the early days of the discovery of the Gray Fossil Site (GFS), meticulous efforts to preserve the spatial data were a priority. Direct surveying of fossils prior to recovery, as well as grid mapping the site, provided relative spatial data within a square meter. Such efforts meant that even fragments and microfossils, recovered during the screening operations and eventual concentrate picking, maintained some spatial data. Available spatial data are used to identify smaller deposits within the greater system, as well as non-random distribution patterns among a number of GFS taxa. Patterns are particularly pronounced in the large-bodied taxa, Teleoceras aepysoma and the GFS mammutid, as well as microvertebrates. Results suggest that controlling factors include taphonomic constraints related to body size, proximity to near-shore or shallow areas, underlying geological features, and to a lesser extent “ecological role”. Results of this research may help guide future excavation and collection methods.
2

[en] ON THE MIN DISTANCE SUPERSET PROBLEM / [pt] SOBRE O PROBLEMA DE SUPERSET MÍNIMO DE DISTÂNCIAS

LEONARDO LOBO DA CUNHA DA FONTOURA 09 June 2016 (has links)
[pt] O Partial Digest Problem (problema de digestão parcial), também conhecido como o Turnpike Problem, consiste na construção de um conjunto de pontos na reta real dadas as distâncias não designadas entre todos os pares de pontos. Uma variante deste problema, chamada Min Distance Superset Problem (problema de superset de distância mínimo), lida com entradas incompletas em que algumas distâncias podem estar faltando. O objetivo deste problema é encontrar um conjunto mínimo de pontos na reta real, tal que as distâncias entre cada par de pontos contenham todas as distâncias de entrada. As principais contribuições deste trabalho são duas formulações de programação matemática diferentes para o Min Distance Superset Problem: uma formulação de programação quadrática e uma formulação de programação inteira. Mostramos como aplicar um método de cálculo direto de limites de valores de variáveis através de uma relaxação Lagrangeana da formulação quadrática. Também introduzimos duas abordagens diferentes para resolver a formulação inteira, ambas baseadas em buscas binárias na cardinalidade de uma solução ótima. A primeira baseia-se num subconjunto de variáveis de decisão, na tentativa de lidar com um problema de viabilidade mais simples, e o segundo é baseado na distribuição de distâncias entre possíveis pontos disponíveis. / [en] The Partial Digest Problem, also known as the Turnpike Problem, consists of building a set of points on the real line given their unlabeled pairwise distances. A variant of this problem, named Min Distance Superset Problem, deals with incomplete input in which distances may be missing. The goal is to find a minimal set of points on the real line such that the multiset of their pairwise distances is a superset of the input. The main contributions of this work are two different mathematical programming formulations for the Min Distance Superset Problem: a quadratic programming formulation and an integer programming formulation.We show how to apply direct computation methods for variable bounds on top of a Lagrangian relaxation of the quadratic formulation. We also introduce two approaches to solve the integer programming formulation, both based on binary searches on the cardinality of an optimal solution. One is based on a subset of decision variables, in an attempt to deal with a simpler feasibility problem, and the other is based on distributing available distances between possible points.

Page generated in 0.0749 seconds