• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Etude de deux massifs de la province granitique stannifère de l'état de Goias (Brésil) et des formations métasomatiques associées aux minéralisations en Sn et Be

Bilal, Essaïd 22 January 1991 (has links) (PDF)
Les granites stannifères de l'état de Goias forment deux groupes d'âge different. Les massifs de Sucuri et de Soledade ont un âge de 1770 Ma et les massifs de Serra Dourada, Serra da Mesa et Serra Branca ont respectivement 1653, 1614 et 1658 Ma. La géologie de cette province conduit à situer la mise en place de ces granites dans la zone de Rift. Les éléments traces Nb, Y, Zr, Ce, La et Ga et le rapport MgO/TiO<sub>2</sub> sont comparables à ceux des granites anorogéniques du sud-ouest des Etats-Unis et de la suite de Gabo en Australie. Les valeurs faibles du rapport Zr/Hf (23 à 28) des massifs étudiés permettent d'exclure une origine directe par fusion partielle, le rapport crustal par fusion est compris entre 30 et 40. La zonalité minéralogique (bordure à biotite et coeur à pyroxène) des lentilles à pyroxène du gisement de Mata Azul (massif de Serra Dourada) traduit le caractère métasomatique de ces roches et rappelle celles des endoskarns. Les études pétrographiques, minéralogiques et géochimiques ont mis en évidence l'importance du rôle du calcium et de la fugacité d'oxygène. A l'exception des albitites, la majorité des zones métasomatiques et les veines minéralisées sont localisées dans la partie apicale du granite fin au nord du massif de Sucuri. Les minéraux du béryllium (béryl, phénacite et helvite) sont présents dans la veine à quartz-muscovite, dans la veine à sidérophyllite. dans l'albitite, seules la phénacite et l'helvite sont présentes. Les variations de composition des minéraux de l'helvite dans le massif de Sucuri résulteraient des variations de la fugacité de soufre et de celle de l'oxygène et de l'alcalinité à l'intérieur du fluide.
22

Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids and their skarn mineralization in the Nanling Range, South China : the Tongshanling and Weijia deposits / Les granitoïdes du jurassique moyen et les skarns à Cu-Pb-Zn et à W associées dans la région de Nanling (Chine du Sud) : les gisements de Tongshanling et de Weijia

Huang, Xu-Dong 28 October 2018 (has links)
Les granitoïdes associés aux skarn à Cu-Pb-Zn et au W, dérivent, respectivement, de la fusion partiellede roches mafiques à amphiboles dans la croute inférieure et de roches métas-édimentaires riches enmuscovite dans la croute moyenne-supérieure. Ces sources fertiles mobilisées pour la formation de cesplutons a permis la formation de gisements à Cu-Pb-Zn, et W au cours du Jurassique moyen. L’originedans la croûte moyenne de la granodiorite de Tongshanling, associée aux minéralisations à Cu-Pb-Zn, aété montrée par l’étude des enclaves microgranulaires dioritiques qui sont des restites remaniées issuesde la fusion partielle des amphibolites de la croûte inférieure. Le Cu et le Zn associées à ces plutons sontprobablement issus de la croûte inférieure et ces métaux ont probablement étés remobilisés au cours dela fusion partielle. Le Pb issue de la croute supérieur a été collecté lors de l’ascension du magma qui adonné la granodiorite. Lors de leur mise en place ces granitoïdes ont exprimé leur potentielminéralisateur. L’étude structural montre que la géométrie des corps minéralisés et en lien avec ladéformation induite par la mise en place des plutons. Les différentes expressions de la minéralisationdans le district à Cu-Mo-Pb-Zn-Ag de Tongshanling sont génétiquement lié à l’hydrothermalisme et à sonévolution lors du développement du skarn. Le granite de Weijia a cristallisé à partir d’un magma saturéen eau et riche en Fluor. Les facteurs qui ont contrôlé la formation de ce skarn magnésien riche en W,suppose l’existence d’une source enrichie en W dans les sources métasédimentaires et d’un magmariche en Fluor très différentia par cristallisation fractionnée. / The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling Range were mainlyderived from non-simultaneous partial melting of the mafic amphibolitic rocks in the lower crust and themuscovite-rich metasedimentary rocks in the upper-middle crust, respectively. The fertile sources in theNanling Range are beneficial to the formation of Cu-Pb-Zn and W deposits during Middle-Late Jurassic.The lower-crust origin of the Cu-Pb-Zn-bearing granodiorites is further demonstrated by the dioriticmicrogranular enclaves in the Tongshanling granodiorite which are reworked restite enclaves derivedfrom partial melting of the mafic amphibolitic source. The Cu and Zn associated with these intrusionswere most probably released from the mafic amphibolitic lower crust by partial melting, whereas, Pb wasextracted from the upper crust by ascending granodioritic magmas. The emplacement of these orebearinggranitoid magmas may have a structural connection with the subsequent polymetallicmineralization in some way. For instance, the exoskarn and sulfide-quartz veins in the Tongshanling Cu-Pb-Zn deposit are evidently controlled by magma emplacement-induced wall-rock deformation. Thedifferent mineralization types and ore deposits in the Tongshanling Cu-Mo-Pb-Zn-Ag ore district aregenetically linked together in the same skarn system as the productions of evolution and zonation. TheWeijia granite was crystallized from a F-rich and water-saturated magma. The key factors controlling theoccurrence of unusual magnesian skarn W mineralization during Late Jurassic in the Nanling Rangemainly include a W enriched metasedimentary source, a fluorine-rich magma, a strong crystalfractionation, and a fluorine-rich hydrosaline melt
23

Ο Γρανίτης της Τήνου και οι συνδεόμενοι με αυτόν σχηματισμοί Skarn

Μάστρακας, Νικόλαος 19 November 2007 (has links)
Η παρούσα έρευνα αναφέρεται στην πετρολογική και κοιτασματολογική μελέτη του πλουτωνίτη της νήσου Τήνου και την συνδεδεμένη μ' αυτόν μεταλλοφορία σεελίτη (βολφραμιούχος) τύπου skarn. Ο ασβεσταλκαλικού χαρακτήρα πλουτωνίτης δείχνει τεκτονικού-θερμομεταφορικού τύπου επαφή με τα πετρώματα του πλαισίου. Συνίσταται άπό δύο βασικές λιθολογικές φάσεις: έναν μεταργιλικού χαρακτήρα βιοτιτικό-κεροστιλβικό γρανοδιορίτη που τοποθετήθηκε γύρω στους 17 Μα σε καθεστώς συμπίεσης σε θερμοκρασία ~770οC και πίεση ~5,2 Kbars. Ο γρανοδιορίτης προήλθε από ένα μάγμα που ήταν αποτέλεσμα μερικής τήξης υλικών μανδυακής προέλευσης και πετρωμάτων του ανώτερου φλοιού. Ο δεύτερος λιθότυπος πλουτωνίτη είναι ένας περιφερειακά αναπτυσσόμενος υπεραργιλικός γρανιτικός - βιοτιτικός λευκογρανίτης. Ο λευκογρανίτης τοποθετήθηκε γύρω στα 14 Μα σε καθεστώς διαστολής σε θερμοκρασία ~680οC και πίεση ~2Kbars. Κρυσταλλώθηκε από μάγμα που προήλθε από την μερική τήξη του γρανοδιορίτη και των περιβαλλόντων μεταϊζημάτων. Γύρω από τον πλουτωνίτη σχηματίσθηκε άλως επαφής πάχους ~1km. Μέσα στην ζώνη του πυροξενικού κερατίτη εντοπίστηκαν σε δύο περιοχές της δυτικής επαφής του πλουτωνίτη οι σχηματισμοί skarn πυροξένου - γρανάτη. Ο τύπος του skarn είναι "οξειδωτικός" εντούτοις διατηρούνται υπολέιμματα του αναγωγικού σταδίου (πλούσιοι σε εδεμβεργίτη πυρόξενοι και πλούσιοι σε γροσσουλάριο πυρήνες γρανατών που έχουν υποστεί ανθρακορρωγμάτωση). Η μεταλλοφορία του σεελίτη εντοπίστηκε μέσα στην ζώνη του πυροξενικού κερατίτη ως αποτέλεσμα διηθητικών - μετασωματικών διαδικασιών. Οι μεγακρύσταλλοί του βρίσκονται σε ισορροπία με τον υδροθερμικό γρανάτη (ζωνώδεις κρύσταλλοι πλούσιοι σε ανδραδίτη με παλμική ζώνωση και ανισοτροπία) και έχουν αποτεθεί σε θερμοκρασία ~375 οC (από ρευστά εγκλείσματα) και πίεση μικρότερη των 500 bars. / The present work is a petrological and mineralization study of the Tinos pluton and particularly of the tungsten skarn ie scheelite mineralization associated with this intrusion. the calcalkaline pluton displays a thermal - tectonic contact with the country rocks. It consists of two lithotypes: a metaluminous biotite- hornblende granodiorite and emplaced ca.17Ma under compression at T~700oC and P ~ 5.2kbars. The granodiorite represents a partial melt of mantle derived and upper crustal materials. The second lithotype of Tinos pluton is a peripherally occurring metaluminous garnet - biotite leucogranite that was emplaced ca. 14Ma at T ~ 680oC and P ~ 2kbars. The leucogranite crystallized from a magma representing a hybrid partial melt from the granodiorite and the encasing metasedimentary rocks. A contact halo of ~1km was formed around the Tinos pluton. In the pyroxene hornfels zone in the western part of the halo, mineralized pyroxene - garnet skarns were developed in two areas as a result of pyrometasomatism followed by infiltration metasomatism. The type of the Tinos skarn is "oxidized" however retains "reduced" characteristics such as hedenbergite and garnet rich in grossular component. The carbofractured grossular garnet cores with hourglass twinning are overgrown by anisotropic, oscillatory - zoned andradite - rich mantles. The scheelite megacrysts are in equilibrium with the latter, hydrothermal garnet. Fluid inclusion studies indicate that the scheelite has crystallized at T~375oC and pressure lesser than 500bars.
24

Pétrologie et géochimie isotopique (S, C, O) des skarns à scheelite de Costabonne (Pyrénées orientales, France)

Guy, Bernard 21 May 1979 (has links) (PDF)
Divers types de roches de la série cambrienne de Canaveilles se font transformer en skarns au voisinage du granite hercynien de Costabonne (Pyrénées orientales). Le présent travail s'intéresse plus spécialement aux skarns formés sur les marbres et dolomies massives (première partie). Dans ce dernier cas, une zonation très fréquemment rencontrée voit la succession : dolomie / calcite + forstérite / diopside / clinopyroxène salitique / grenat grossularitique. Les différents minéraux rencontrés sont analysés à la microsonde électronique. Un grenat andraditique a pu se développer de façon précoce, avant le grenat grossularitique, et les zonations métasomatiques ont pu évoluer au cours du temps. Les altérations des minéraux primaires voient le développement d'amphiboles, de quartz, de sulfures et d'un minéral de tungstène : la scheelite. Dans une deuxième partie, une réflexion à caractère théorique est proposée sur la formation des skarns (discussion du modèle de Korzhinskii) et une règle des phases généralisée à un système de zones métasomatiques est présentée. La troisième partie est consacrée à l'analyse des conditions de pression, température etc. qui ont prévalu lors de la formation des skarns, ainsi qu'à la discussion des compositions isotopiques (S, C, O) des skarns et encaissants ; on met en évidence une source externe, à la fois en carbone, soufre et oxygène (source " profonde ") pour le fluide qui a percolé. Les mesures des compositions isotopiques d'autres skarns des Pyrénées, porteurs ou non de scheelite (Salau, Roc Jalère, Lacourt), indiquent que la condition d'une minéralisation en tungstène est la présence d'un fluide ayant une telle signature isotopique " profonde ". La comparaison entre les skarns de Salau et Costabonne met en évidence le rôle réducteur du carbone des marbres de l'encaissant sur la nature des associations minérales des skarns à Salau.
25

Skarn testing report: MAP002: D5.4

Brosig, Andreas 12 March 2021 (has links)
An assessment of tin-skarn resources in the Erzgebirge, Germany, was conducted with the 3-Part Method. For this purpose a Grade-Tonnage Model for this deposit type was established. A literature review produced grade and tonnage data for 23 skarn deposits, of which 9 are in the assessment area. Based on an existing predictive map created with an AI algorithm, seven permissive tracts with a total area of 776 km² were defined. To estimate the number of undiscovered deposits a panel of five experts in the economic geology of the Erzgebirge was assembled. From the expert estimates and the newly developed Grade-Tonnage Model the undiscovered ore and metal tonnages in each permissive tract were evaluated. In four of the seven tracts the probability of the existence of at least one undiscovered deposit is estimated to be greater than 50%, in permissive tract 2 it is even greater than 90%. In each of these tracts, the median assessed undiscovered ore tonnages are several million tons and the tin resources exceed 10,000 tons. For the most perspective tract (Permissive tract 2) the median estimates are 40.6 Million tons of ore with a tin content of 114,000 tons. For tungsten (tonnages calculated as WO3) the numbers are slightly lower. The results verify the high resource potential of tin skarns in the Erzgebirge and can be used to guide future exploration activities to the most economically promising permissive tracts.
26

Mineralogy and microfabric as foundation for a new particle-based modelling approach for industrial mineral separation

Pereira, Lucas 11 January 2023 (has links)
Mining will remain indispensable for the foreseeable future. For millennia, our society has been exploring and exploiting mineral deposits. Consequently, most of the easily exploitable high-grade deposits, which were of primary interest given their obvious technical and economic advantages, have already been depleted. For the future, the mining sector will have to efficiently produce metals and minerals from low-grade orebodies with complex mineralogical and microstructural properties -- these are generally referred to as complex orebodies. The exploitation of such complex orebodies carries significant technical risks. However, these risks may be reduced by applying modelling tools that are reliable and robust. In a broad sense, modelling techniques are already applied to estimate the resources and reserves contained in a deposit, and to evaluate the potential recovery (i.e., behaviour in comminution and separation processes) of these materials. This thesis focusses on the modelling of recovery processes, more specifically mineral separation processes, suited to complex ores. Despite recent developments in the fields of process mineralogy and geometallurgy, current mineral separation modelling methods do not fully incorporate the available information on ore complexity. While it is well known that the mineralogical and microstructural properties of individual particles control their process behaviour, currently widely applied modelling methods consider only distributions of bulk particle properties, which oftentimes require much simplification of the particle data available. Moreover, many of the methods used in industrial plant design and process modelling are based on the chemical composition of the samples, which is only a proxy for the mineralogical composition of the ores. A modelling method for mineral separation processes suited to complex ores should be particle-based, taking into consideration all quantifiable particle properties, and capable of estimating uncertainties. Moreover, to achieve a method generalizable to diverse mineral separation units (e.g., magnetic separation or flotation) with minimal human bias, strategies to independently weight the importance of different particle properties for the process(es) under investigation should be incorporated. This dissertation introduces a novel particle-based separation modelling method which fulfills these requirements. The core of the method consists of a least absolute shrinkage and selection operator-regularized (multinomial) logistic regression model trained with a balanced particle dataset. The required particle data are collected with scanning electron microscopy-based automated mineralogy systems. Ultimately, the method can quantify the recovery probability of individual particles, with minimal human input, considering the joint influence of particle shape, size, and modal and surface compositions, for any separation process. Three different case studies were modelled successfully using this new method, without the need for case-specific modifications: 1) the industrial recovery of pyrochlore from a carbonatite deposit with three froth flotation and one magnetic separation units, 2) the laboratory-scale magnetic separation of a complex skarn ore, and 3) the laboratory-scale separation of apatite from a sedimentary ore rich in carbonate minerals by flotation. Moreover, the generalization potential of the method was tested by predicting the process outcome of samples which had not been used in the model training phase, but came from the same geometallurgical domain of a specific ore deposit. In each of these cases, the method obtained high predictive accuracy. In addition to its predictive power, the new particle-based separation modelling method provides detailed insights into the influence of specific particle properties on processing behaviour. To name a couple, the influence of size on the recovery of different carbonate minerals by flotation in an industrial operation; and a comparison to traditional methodologies demonstrated the limitation of only considering particle liberation in process mineralogy studies -- the associated minerals should be evaluated, too. Finally, the potential application of the method to minimize the volume of test work required in metallurgical tests was showcased with a complex ore. The approach developed here provides a foundation for future developments, which can be used to optimize mineral separation processes based on particle properties. The opportunity exists to develop a similar approach to model the comminution of single particles and ultimately allow for the full prediction of the recovery potential of complex ores.:1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 State-of-the-art in particle-based separation models . . . . . . . . . . . 11 1.4 Moving forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.1 Particle data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.2 Mathematical tools required for the particle-based separation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 The method and its application to industrial operations 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Assumptions and limitations . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Data structure and required pre-treatment . . . . . . . . . . . . 27 2.2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 Artificial test cases . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Real case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Discussion and final considerations . . . . . . . . . . . . . . . . . . . . 39 3 The robustness of the method towards compositional variations of new feed samples 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Generalization potential of current Particle-based Separation Model (PSM) methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.2 Dry magnetic separation tests . . . . . . . . . . . . . . . . . . . 53 3.3.3 Sample characterization . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Particle-based separation models . . . . . . . . . . . . . . . . . 54 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Flotation kinetics of individual particles 67 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.2 Cumulative recovery probability . . . . . . . . . . . . . . . . . . 72 4.2.3 Particle-based kinetic flotation model . . . . . . . . . . . . . . . 74 4.3 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 Discussion and final thoughts . . . . . . . . . . . . . . . . . . . . . . . 80 5 Conclusions and outlook 85 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Bibliography 89
27

Rohstoffprognosen für Zinn, Wolfram, Fluss- und Schwerspat im Mittelerzgebirge

Brosig, Andreas, Barth, Andreas, Knobloch, Andreas, Dickmayer, Ellen 04 January 2022 (has links)
Im Rahmen des Projektes ROHSA 3 wurden auf Basis vorhandener und neu verfügbar gemachter Daten Prognosen für Zinn, Wolfram sowie Fluss- und Schwerspat in einem 740 m² großen Gebiet im Mittelerzgebirge angefertigt. Die Karten zeigen höffige Gebieten, wobei für Zinn und Wolfram erstmals auch Mengen-Prognosen erstellt wurden. Geophysikalische, geochemische Daten sowie Lagerstättenindikatoren (z. B. Tektonik, Erz kontrollierende Lithologien) wurden durch die Software advangeo@ aufbereitet und mittels ihrer künstlich neuronalen Netze (KNN) verarbeitet. Durch höhere Datendichte, Einbeziehung dreidimensionaler geologischer Daten und Aufstellung quantitativer Modelle wurde ein deutlicher Erkenntnisfortschritt erzielt. Redaktionsschluss: 31.07.2020

Page generated in 0.0455 seconds