• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 33
  • 11
  • 9
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 189
  • 189
  • 189
  • 39
  • 31
  • 29
  • 28
  • 25
  • 24
  • 23
  • 21
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

MRI-Compatible Pneumatic Actuation Control Algorithm Evaluation and Test System Development

Wang, Yi 23 September 2010 (has links)
"This thesis presents the development of a magnetic resonance imaging (MRI) compatible pneumatic actuation test system regulated by piezoelectric valve for image guided robotic intervention. After comparing pneumatic, hydraulic and piezoelectric MRI-compatible actuation technologies, I present a piezoelectric valve regulated pneumatic actuation system consisted of PC, custom servo board driver, piezoelectric valves, sensors and pneumatic cylinder. This system was proposed to investigate the control schemes of a modular actuator, which provides fully MRI-compatible actuation; the initial goal is to control our MRI-compatible prostate biopsy robot, but the controller and system architecture are suited to a wide range of image guided surgical application. I present the mathematical modeling of the pressure regulating valve with time delay and the pneumatic cylinder. Three different sliding mode control (SMC) schemes are proposed to compare the system performance. Simulation results are presented to validate the control algorithm. Practical tests with parameters determined from simulation show that the system performance attained the goal. A novel MRI- compatible locking device for the pneumatic actuator was developed to provide safe lock function as the pneumatic actuator fully stopped."
52

Exploration sécurisée d’un champ aérodynamique par un mini drone / Safe exploration of an aerodynamic field by a mini drone

Perozzi, Gabriele 13 November 2018 (has links)
Cette thèse s’inscrit dans le cadre du projet "Petits drones dans le vent" porté par le centre ONERA de Lille. Ce projet vise à utiliser le drone comme "capteur du vent" pour gérer un quadcopter UAV dans des conditions aérologiques perturbées en utilisant une prédiction du champ de vent. Dans ce contexte, le but de la thèse est de faire du quadcopter un capteur de vent pour fournir des informations locales afin de mettre à jour le système de navigation. Grâce à l’estimation du vent à bord en temps réel, le quadcopter peut calculer une planification de trajectoire évitant les zones dangereuses et le contrôle de trajectoire correspondant basé sur une cartographie existante et doté des informations relatives au concernant le comportement aérodynamique de l’écoulement d’air à proximité des obstacles. Ainsi, les résultats de cette thèse, dont les objectifs principaux portent sur l’estimation du vent instantanée et le contrôle de position, seront fusionnés avec une autre étude traitant de la planification de trajectoire. Un problème important est que les capteurs de pression, tels que l’aéroclinomètre et le tube de Pitot, ne sont pas facilement utilisables à bord des véhicules à voilure tournante car l’entrée des rotors interfère avec le flux atmosphérique et les capteurs LIDAR légers généralement ne sont pas disponibles. Une autre approche pour estimer le vent consiste à mettre en œuvre un logiciel d’estimation (ou un capteur intelligent). Dans cette thèse, trois estimateurs de ce type sont développés en utilisant l’approche du mode glissant, basée sur un modèle de drone adéquat et des mesures disponibles sur le quadcopter et sur des systèmes de position de suivi inertiel. Nous nous intéressons ensuite au contrôle de la trajectoire également par mode glissant en considérant le modèle non linéaire du quadcopter. Nous étudions par ailleurs de façon encore assez préliminaire une solution alternative fondée sur la commande H, en considérant le modèle linéarisé pour différents points d’équilibre en fonction de la vitesse du vent. Les algorithmes de contrôle et d’estimation sont strictement basés sur le modèle détaillé du quadcopter, qui met en évidence l’influence du vent / This thesis is part of the project "Small drones in the wind" carried by the ONERA center of Lille. This project aims to use the drone as a "wind sensor" to manage a UAV quadrotor in disturbed wind conditions using wind field prediction. In this context, the goal of the thesis is to make the quadrotor a wind sensor to provide local information to update the navigation system. With real-time on-board wind estimation, the quadrotor can compute a trajectory planning avoiding dangerous areas and the corresponding trajectory control, based on anexisting cartography and information on the aerodynamic behavior of airflow close to obstacles. Thus, the results of this thesis, whose main objectives are to estimate instant wind and position control, will be merged with another study dealing with trajectory planning. An important problem is that pressure sensors, such as the aeroclinometer and the Pitot tube, are not usable in rotary-wing vehicles because rotors air inflow interferes with the atmospheric flow and lightweight LIDAR sensors generally are not available. Another approach to estimate the wind is to implement an estimation software (or an intelligent sensor). In this thesis, three estimators are developed using the sliding mode approach, based on an adequate drone model, available measurements on the quadrotor and inertial tracking position systems. We are then interested in the control of the trajectory also by sliding mode considering the nonlinear model of the quadrotor. In addition, we are still studying quite an early alternative solution based on the H control, considering the linearized model for different equilibrium points as a function of the wind speed. The control and estimation algorithms are strictly based on the detailed model of the quadrotor, which highlights the influence of the wind
53

Controle por modos deslizantes aplicado a sistema de posicionamento dinâmico. / Sliding mode control applied to dynamic positioning systems.

Adriana Cavalcante Agostinho 20 May 2009 (has links)
Este trabalho apresenta a aplicação da teoria de controle robusto não linear por modos deslizantes a sistemas de posicionamento dinâmico para embarcações flutuantes, com validação experimental. O objetivo do sistema de controle projetado é manter a embarcação próxima a uma posição pré-ajustada (set-point) ou a uma trajetória preestabelecida (pathfollowing), por meio das forças geradas nos propulsores, mesmo estando o sistema na presença de distúrbios externos, ou seja, vento, ondas e correnteza. A princípio, realizaram-se simulações numéricas com o sistema projetado a fim de verificar o seu desempenho. O simulador utilizado foi implementado em ambiente Matlab/Simulink, considerando a dinâmica da embarcação e dos agentes ambientais. As simulações consistiram de manobras realizadas em condições nominais e na ausência de esforços ambientais, com embarcação cheia (plena) e vazia (lastro). Para validação do algoritmo implementado realizaram-se ensaios de manobra em condição de calmaria e na presença de vento, com a embarcação em plena carga e vazia. Os ensaios foram administrados no laboratório do Departamento de Engenharia Naval e Oceânica da USP (DENO). O algoritmo de controle por modos deslizantes demonstrou-se robusto a variações de condições ambientais (vento), mantendo o desempenho e estabilidade. Verificou-se que o ajuste dos parâmetros do controlador pode ser feito de forma intuitiva, utilizando-se fórmulas matemáticas. Além disso, a estrutura não linear do controlador e suas propriedades de robustez asseguram o desempenho e estabilidade para uma grande gama de condições ambientais e manobras realizadas com a embarcação. / This paper presents the application of the robust and nonlinear sliding mode control theory to the dynamic positioning systems for floating vessel, with experimental validation. The objective of the control system designed is to keep the vessel next a specific position (set-point) or follow a pre-defined trajectory (pathfollowing) through the action of propellers, in the presence of wind, waves and current external disturbances. In principle numerical simulations were carried out with the system designed to verify its performance. The simulator used was implemented in a Matlab / Simulink, considering the dynamics of the vessel and environmental agents. The simulations consisted of maneuvers carried out in nominal condition and in the absence of environmental efforts, with the vessel full and empty (ballasted). In order to validate the algorithm, small scale experiments were done, considering maneuvers in both calm and windy conditions, with the vessel at full or ballasted load. The tests were conducted at the laboratory of the Naval and Ocean Engineering Department (DENO) of the University of São Paulo. The sliding mode control was robust to variations in environmental conditions (wind), keeping the performance and stability. It was verified that the adjustment of controller parameters can be easily done, using mathematical equations. Moreover, the nonlinear structure of the controller and its robustness properties ensure the performance and stability for a large range of environmental conditions and maneuvers carried out with the vessel.
54

High gain approach and sliding mode control applied to quadrature interferometer /

Felão, Luiz Henrique Vitti. January 2019 (has links)
Orientador: Cláudio Kitano / Abstract: Interferometers are extremely sensitive measurement devices, which use the principle of interference between two or more sources of light to generate a pattern of constructive and destructive interference. This pattern contains information about the physical phenomenon under study, and their light intensity can be used to calculate the optical path difference traveled by the two beams. The optical path difference and light intensity relationship is given by a cosine type function. Large disturbances can change the interferometer operation point, reaching nonlinear regions of the interferometric curve and even inducing ambiguities due to the periodicity of the input/output relationship. The present work concerns with the modeling, development and application of a control strategy based on sliding mode control, in a two-beam quadrature interferometer. It was used the high gain approach, which consists in to fully compensate the phase shifts induced on the sensor arm with the control system, in such a way that the voltage control signal becomes proportional to the phase disturbances. Therefore, the demodulation process does not require phase unwrapping algorithms. This implemented system showed capability to improve dynamic range and bandwidth when compared with other control systems in literature that were based on different high gain approach topologies. Also a new method of interferometric phase demodulation is proposed allying this control strategy to a virtual emulated inte... (Complete abstract click electronic access below) / Resumo: Interferômetros são dispositivos de medição extremamente sensíveis, os quais utilizam o princípio de interferência entre duas ou mais fontes de luz para gerar um padrão de interferência construtiva e destrutiva. Este padrão contém informação sobre os fenômenos físicos sob estudo, e sua intensidade luminosa pode ser usada para calcular a diferença de caminho óptico acumulada pelos dois feixes de luz. A diferença de caminho óptico e a intensidade de luz são relacionadas por uma função cossenoidal. Grandes distúrbios podem alterar o ponto de operação do interferômetro, alcançando regiões não lineares da curva característica do interferômetro e até mesmo induzindo ambiguidades, devido à periodicidade da relação entrada/saída. Este trabalho preocupou-se com o modelamento, desenvolvimento e aplicação de uma estratégia de controle baseada em controle com modos deslizantes, em um interferômetro de dois feixes em quadratura. Foi utilizada a abordagem de alto ganho, a qual consiste em utilizar o sistema de controle para compensar completamente os deslocamentos de fase induzidos no braço sensor, de tal forma que o sinal de controle se relaciona com os deslocamentos de fase por uma equação de reta. Portanto o processo de demodulação não necessita de algoritmos de desdobramento de fase. O sistema implementado mostrou capacidade de melhorar a faixa dinâmica e largura de banda quando comparado com outros sistemas de controle na literatura, também baseados na abordagem de alto ganho. Destaca... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
55

On Discretization of Sliding Mode Control Systems

Wang, Bin, s3115026@student.rmit.edu.au January 2008 (has links)
Sliding mode control (SMC) has been successfully applied to many practical control problems due to its attractive features such as invariance to matched uncertainties. The characteristic feature of a continuous-time SMC system is that sliding mode occurs on a prescribed manifold, where switching control is employed to maintain the state on the surface. When a sliding mode is realized, the system exhibits some superior robustness properties with respect to external matched uncertainties. However, the realization of the ideal sliding mode requires switching with an infinite frequency. Control algorithms are now commonly implemented in digital electronics due to the increasingly affordable microprocessor hardware although the essential conceptual framework of the feedback design still remains to be in the continuous-time domain. Discrete sliding mode control has been extensively studied to address some basic questions associated with the sliding mode control of discrete-time systems with relatively low switching frequencies. However, the complex dynamical behaviours due to discretization in continuous-time SMC systems have not yet been fully explored. In this thesis, the discretization behaviours of SMC systems are investigated. In particular, one of the most frequently used discretization schemes for digital controller implementation, the zero-order-holder discretization, is studied. First, single-input SMC systems are discretized, stability and boundary conditions of the digitized SMC systems are derived. Furthermore, some inherent dynamical properties such as periodic phenomenon, of the discretized SMC systems are studied. We also explored the discretization behaviours of the disturbed SMC systems. Their steady-state behaviours are discussed using a symbolic dynamics approach under the constant and periodic matched uncertainties. Next, discretized high-order SMC systems and sliding mode based observers are explored using the same analysis method. At last, the thesis investigates discretization effects on the SMC systems with multiple inputs. Some conditions are first derived for ensuring the
56

Robotstyrning med metoden Sliding Mode Control / Missile control using the Sliding Mode Control methodology

Sigfridsson, Jenny, Frisk, Josefin January 2005 (has links)
<p>The task in this thesis is the steering of one of Saab Bofors Dynamics robots using Sliding Mode Control, a method they never used before. The robot constitutes a system which in addition to perturbations and uncertainties due to modeling imprecision, hold the difficulty of being highly time variant. In order to be able to keep required performance with uncertainties and modeling imprecision present, the use of robust control methods like Sliding Mode Control is necessary. SMC is based on the states of the system being forced to stay on or in the direct vicinity of a hyper plane in the state space which is chosen in a way that gives the system dynamics desired properties. Other advantages with sliding mode are reduced order dynamics on the switching surface and total insensitivity to some uncertainties and perturbations. The existing metod for controlling the robot is Linear Quadratic Control. To evaluate the SMC-methodology and compare it with the existing solution simulations using SMC and LQ-control are made with uncertainties and modeling imprecision. Our tests show that a control law based on SMC is robust and seems to be a very good alternative to the existing solution.</p>
57

ACTIVE SUSPENSION CONTROL WITH DIRECT-DRIVE TUBULAR LINEAR BRUSHLESS PERMANENT-MAGNET MOTOR

Lee, Seungho 16 January 2010 (has links)
Recently, active suspension has been applied to many commercial automobiles. To develop the control algorithm for active suspension, a quarter-car test bed was built by using a direct-drive tubular linear brushless permanent-magnet motor (LBPMM) as a force-generating component. Two accelerometers and a linear variable differential transformer (LVDT) are used in this quarter-car test bed. Three pulse-width-modulation (PWM) amplifiers supply the currents in three phases. Simulated road disturbance is generated by a rotating cam. Modified lead-lag control, linear-quadratic (LQ) servo control with a Kalman filter, and the fuzzy control methodologies were implemented for active-suspension control. In the case of fuzzy control, asymmetric membership functions were introduced. This controller could attenuate road disturbance by up to 78%. Additionally, a sliding-mode controller (SMC) is developed with a different approach from the other three control methodologies. While SMC is developed for the position control, the other three controllers are developed for the velocity control. SMC showed inferior performance due to the drawback of the implemented chattering-proof method. Both simulation and experimental results are presented to demonstrate the effectiveness of these four control methodologies.
58

Design of Sigma-Delta Analog-to-Digital Converter by Sliding Mode Control Techniques

Li, Chien-Hui 25 July 2007 (has links)
This thesis is to deal with the saturation problem arisen from the integrator accumulation in the loop of the sigma-delta analog-to-digital converter. Signal passes through the accumulation of several integrators in the high-order sigma-delta analog-to-digital converter, it tends to result in saturation problem in the output of integrator. This phenomenon is prominent especially in implementation. Unable to correctly propagate signal to the next integrator stage, thus, causes the analog-to-digital converter create incorrect result. Accordingly, this thesis proposes a new anti-windup scheme by means of sliding mode control to tackle the saturation problem. We have successfully set up a criterion for the selection of parameters of the sigma-delta analog-to-digital converter to prevent the integrators from saturation. After extensive simulation and experiment, it can significantly improve the ensemble of the sigma-delta analog-to-digital modulator.
59

Robust Servo Tracking with Divergent Trinocular Cameras

Chang, Chin-Kuei 30 July 2007 (has links)
It has been well known that the architecture of insect compound eyes contributes outstanding capability for precise and efficient observation of moving objects. If this technique can be transferred to the domain of engineering applications, significant improvement on visual tracking of moving objects will be greatly expected. The brightness variation, caused by relative velocity of the camera and environment in a sequence of images, is called optical flow. The advantage of the optical-flow-based visual servo methods is that features of the moving object do not have to be known in advance. Therefore, they can be applied for general positioning and tracking tasks. The purpose of this thesis is to develop a visual servo system with trinocular cameras. For mimicking the configuration of compound eyes of insects, the arrangement of the divergent trinocular cameras is applied. In order to overcome possible difficulties of unknown or uncertain parameters, an image servo technique using the robust discrete-time sliding-mode control algorithm to track an object moving in 2D space is developed.
60

Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

Yi, Hak 1979- 14 March 2013 (has links)
This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator.

Page generated in 0.1219 seconds