• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 2
  • Tagged with
  • 20
  • 20
  • 11
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Activities of short-term slow slip events clarified by a newly developed systematic detection method using decadal GNSS data in the Nankai, Alaska, and Japan subduction zones / GNSSデータから短期的スロースリップイベントを系統的に検出する新手法の開発と南海・アラスカ・日本海溝沈み込み帯における長期間GNSSデータへの適用

Okada, Yutaro 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25122号 / 理博第5029号 / 新制||理||1717(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 西村 卓也, 教授 宮﨑 真一, 教授 大見 士朗 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
12

Etude des séismes lents et du chargement intersismique dans la région de Guerrero au Mexique / Study of slow slip events and interseismic strain accumulation in the Guerrero regin, Mexico

Radiguet de La Bastaie, Mathilde 21 November 2011 (has links)
Les observations récentes ont mis en évidence la diversité des régimes de glissement des failles, et particulièrement l'existence de glissements asismiques transitoires, les séismes lents. Ce travail a pour objectif la compréhension de l'impact de ces séismes lents sur le cycle sismique. La zone étudiée correspond à la zone de subduction du sud du Mexique, au niveau de la lacune sismique de Guerrero. A partir de mesures de déplacement de surface, principalement par GPS, le glissement sur l'interface de subduction est modélisé par des dislocations dans un milieu élastique. Cette analyse nous permet de contraindre l'évolution spatio-temporelle de deux épisodes de glissements lent (2006 et 2009-2010), ainsi que le couplage de l'interface de subduction. Nos résultats montrent une certaine variabilité dans l'évolution spatio-tempororelle des deux glissements étudiés : le séisme lent de 2006 présente clairement une propagation du glissement, à une vitesse d'environ 1 km/jour ; le séisme lent de 2009-2010 présente deux sous-évènements, l'occurrence du deuxième sous-évènement étant liée au déclenchement par le séisme de Maule au Chili. Nos résultats mettent également en évidence les variations latérales dans le couplage intersismique de l'interface de subduction : le couplage dans la lacune sismique de Guerrero étant 4 fois plus faible que le couplage de part et d'autre de la lacune. Ainsi la majeure partie du glissement est accommodée par les séismes lents dans la lacune sismique de Guerrero. / Recent observations reveal the existence of different slip behaviors on fault, and among them the occurrence of transient aseismic slip events, the so-called slow slip events (SSEs). The general goal of this work is to understand the impact of slow slip events on the seismic cycle. The area of study is located in the southern Mexican subduction zone, around the Guerrero seismic gap. We use continuous GPS measurements of the ground displacements to model the slip on the subduction interface, using a dislocation model in an elastic half space. We can thus constrain the spatial and temporal evolution of two slow slip events (in 2006 and in 2009-2010), as well as the coupling ratio of the subduction interface. Our results highlight the differences in the spatio-temporal evolution of the two slow slip events : during the 2006 SSE, the slip propagated at a velocity of 1 km/day. The 2009-2010 SSE occurred in two sub-events and the second sub-event was triggered by the surface waves of the Maule earthquake (in Chili). Our results also show the lateral variations in the interseismic coupling of the subduction interface : the coupling ratio in the Guerrero gap being only 1/4 of the couling ratio on both sides of the gap. Most of the slip is thus accommodated by slow slip events in the Guerrero seismic gap.
13

Rhéologie des failles lithosphériques : vers une compréhension géologique et mécanique de la zone de transition sismique-asismique / Lithospheric faults rheology : toward a geological and mechanical understanding of the seismic-to-aseismic transition zone

Bernaudin, Maxime 17 November 2017 (has links)
Ces vingt dernières années, le développement de réseaux haute résolution sismologiques et géodésiques denses a permis la découverte de nouveaux signaux géophysiques parmi lesquels on trouve les trémors non-volcaniques (Non-volcanic tremor, NVT, Obara 2002) et les glissements lents épisodiques (Slow Slip Event, SSE, Dragert et al., 2001). La combinaison de NVT et de SSE est communément observée le long des frontières de plaques, entre la zone sismogénique bloquée à faible profondeur et la zone en fluage ductile à plus grande profondeur (Dragert et al., 2004). Cette association définie des glissements et trémors épisodiques (Episodic Tremor and Slip, ETS), systématiquement associés à des surpressions de fluides et à des conditions proches de la rupture. Dans cette thèse, nous proposons de combiner une étude microstructurale de roches exhumées avec une approche par modélisation numérique afin de reproduire et de mieux comprendre la mécanique des glissements et trémors épisodiques.Nous nous sommes concentrés sur des roches continentales provenant de la Zone de Cisaillement Est du Tende (Corse, France), correspondant à une zone de cisaillement Alpine kilométrique ayant enregistré une déformation dans la zone de subduction (10 kb / 400-450°C, Gueydan et al., 2003). Ces conditions pression-température sont cohérentes avec la localisation des ETS dans les zones de subduction. Les analyses microstructurales et EBSD de ces roches mettent en évidence des localisations de la déformation le long de zones de cisaillement centimétriques contrôlées par une rhéologie dépendante de la taille des grains. La microfracturation de la phase dure (ici du feldspath) et le colmatage de ces microfractures correspondent, respectivement, à de processus de réduction et d’augmentation de la taille des grains.La plupart des récentes modélisations des ETS sont basées sur une loi frictionnelle dite rate-and-state, associant les SSE et les NVT à un cisaillement sur un plan. Contrairement à ces modèles, nous souhaitons modéliser l’ensemble de la roche (et non pas uniquement un plan) avec une rhéologie ductile dépendante de la taille des grains directement guidée par nos observations microstructurales (avec microfracturation et colmatage), Nous faisons l’hypothèse que les SSE peuvent résulter d’une localisation ductile de la déformation et non d’un glissement sur des fractures. Durant la localisation de la déformation, le pompage des fluides peut déclencher une fracturation de la roche par surpression de fluide, ce qui pourrait être la signature des NVT. Le modèle numérique 1D présenté ici nous permettra de valider ces hypothèses. En suivant la loi de Darcy, notre approche nous permet également de prédire les variations de la pression de pore en fonction des variations de la porosité/perméabilité et du pompage des fluides.Les résultats numériques montrent que l’évolution dynamique des microstructures, dépendante des fluides, définie des cycles de localisation ductile de la déformation liés aux augmentations de la pression de fluide. Notre modèle démontre que la disponibilité des fluides et l’efficacité du pompage des fluides contrôlent l’occurrence des ETS. Nous prédisons également les conditions pression-température nécessaires au déclenchement des ETS : 400-500°C et 30-50 km de profondeur en subduction, et ~500°C et 15-30 km de profondeur le long des zones de décrochement. Ces conditions PT sont cohérentes avec les exemples naturels.Aussi simple soit-elle, notre modèle mécanique s’appuyant sur des observations de terrain décrit correctement la relation entre surpressions de fluides, rhéologie dépendant de la taille des grains et le déclenchement des ETS. Des travaux restent à entreprendre comme par exemple la comparaison directe de nos résultats avec des données géophysiques (GPS) ou bien l’introduction d’un nouvelle assemble minéralogique, comme par exemple des roches mafiques pour prendre en compte des minéralogies océaniques. / These last twenty years, the development of dense and highly sensitive seismologic and geodetic networks permits the discovery of new geophysical signals named non-volcanic tremor (Obara 2002) and slow slip events (Dragert et al., 2001). The combination of non-volcanic tremor and transient slow slip is commonly observed at plate interface, between locked/seismogenic zone at low depths and stable/ductile creep zone at larger depths (Dragert et al., 2004). This association defines episodic tremor and slip, systematically highlighted by over-pressurized fluids and near failure shear stress conditions. In this thesis we propose to combine a microstructural analysis of exhumed rocks with a modeling approach in order to accurately reproduce and understand the physics of episodic tremor and slip.We focus on continental rocks from the East Tenda Shear Zone (Corsica, France), a kilometer-wide localized Alpine shear zone that record HP/LT deformation (10kb / 400-450°C, Gueydan et al., 2003). Such pressure-temperature conditions are consistent with the location of episodic tremor and slip in subduction zone. Microstructural and EBSD analyses on these rocks describe a pattern of strain localization in centimeter-scale shear zones guiding by a grain size-sensitive creep. Microfracturing of the strong phase (feldspar here) and the sealing of these microfractures act, respectively, as grain size decrease and grain size increase processes.Most of recent modeling approaches of episodic tremor and slip are based on the rate-and-state variable friction law, describing slow slip event and non-volcanic tremor as slow shear slip on a plane. In contrast with such models, we wish to model the entire rock volume, with a ductile grain size-sensitive rheology guided by our microstructural observations (e.g. microfracturing and sealing as grain size variation processes). We hypothesize that slow slip events may result from ductile strain localization and not transient slip on fractures. Fluid pumping during strain localization may trigger whole rock fracturing at near lithostatic conditions that can be the signature of non-volcanic tremor. The 1D numerical model presented here will allow us to validate these assumptions.We also can predict pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping following the Darcy’s flow law. The fluid-enhanced dynamic evolution of microstructure defines cycles of ductile strain localization related to the increase in pore fluid pressure. We show that slow slip events can be ductile processes related to transient strain localization, while non-volcanic tremor can correspond to fracturing of the whole rock at peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence of episodic tremor and slip. We also well predict the temperature and depth ranges of episodic tremor and slip: 400-500°C and 30-50 km in subduction zones and ~500°C and 15-30 km in strike slip settings, consistent with natural examples.As simplistic as it is, our field-guided mechanical model well describe, at first order, the relation between high pore fluid pressure, grain size-sensitive rheology and episodic tremor and slip. Some efforts remain to be done like a real fit of geophysical data (GPS) or the introduction of the new mineralogical assemblage, such as mafic rocks to reproduce oceanic environment.
14

Les trémors non volcaniques : observations et modélisations / Non volcanic tremors : observations and modeling

Zigone, Dimitri 27 January 2012 (has links)
Depuis maintenant une dizaine d'années, la vision du cycle sismique en zone de subduction a beaucoup évolué. Des découvertes récentes ont mis en évidence une grande diversité des régimes de glissement dans ces zones, avec notamment des glissements asismiques transitoires appelés « séismes lents » (SSE) et des vibrations de faibles amplitudes, persistantes dans le temps, appelées « trémors non volcaniques » (NVT). Ce travail a pour objectif l'étude des trémors non volcaniques afin de caractériser ces nouvelles manifestations des zones de faille. Nous avons abordé ce problème avec deux approches distinctes :1. Observer les trémors dans le milieu naturel afin de déterminer leurs caractéristiques. La zone étudiée correspond à la lacune sismique de Guerrero le long de la subduction mexicaine. Nous avons développé une méthode de détection et de localisation des NVT au Mexique grâce à des analyses d'antennes par formation de voie sur les corrélations. Cette méthode permet de mettre en évidence cer taines caractéristiques des NVT : une complexité des sources pour un épisode de trémors, une corrélation entre les activités de NVT et les pics de vitesse des glissements lents à plus long terme. Par ailleurs, l'étude de l'impact du séisme de Maule (2010, Chili, Mw 8.8) au Mexique montre qu'il a déclenché le second sous évènement du séisme lent de 2009-2010. Ce déclenchement d'un SSE s'ac- compagne de fortes activités de trémors, modulées par les ondes du séisme de Maule dans un premier temps, puis simplement associées au SSE.2. Modéliser les trémors expérimentalement et numériquement pour mieux com- prendre leur origine physique et leurs évolutions sur le long terme. Nous avons en particulier utilisé une expérience de frottement à faible vitesse qui indique une corrélation systématique entre les accélérations d'un glissement et l'émission de signaux qui ressemblent à des NVT. Une modélisation numérique de la zone de subduction mexicaine est également présentée et montre la possibilité de reproduire des trémors en considérant une transition d'affaiblissement critique associée à un processus de décrochage. / The vision of the seismic cycle in subduction zones has considerably evolved over the last 10 years. New discoveries has pointed the diversity of slip behaviors in these zones with aseismic slow slip called « slow slip events » (SSE) and persistent low amplitudes vibrations called « non-volcanic tremors » (NVT). The goal of this thesis is to study the non-volcanic tremors in order to characterize these new manifestations of fault zones. We used two different approaches: 1. We first observed the non-volcanic tremors in the nature in order to characterize this phenomenon. The area of interest is the Guerrero seismic gap along the Mexican subduction zone. We develop a new detection and location method based on beamforming of correlations of seismic signals. This new method exhibits some characteristics of NVT: a complex source for a single tremor episode and a correlation between the NVT episodes and the long-term peak of movement velocity in southwards direction. Moreover, the study of the consequences of the Maule earthquake on the Mexican subduction zone showed that this earthquake triggered the 2009-2010 SSE in Guerrero. This triggering of slow slip is accompanied by strong seismic tremor actvity that are first modulated by the passing waves and then associated to the SSE. 2. We model numerically and experimentally the tremors in order to better understand their physical origin and their long-term evolution. We used a very slow friction experiment that indicates a systematic correlation between slip acceleration of a slider and emission of acoustic signals that are similar to NVT. A numerical modeling of the Mexican subduction zone is also presented and shows the possibility to reproduce NVT with a critical depinning transition.
15

Constraining Source Models, Underlying Mechanisms, and Hazards Associated with Slow Slip Events: Insight from Space-Borne Geodesy and Seismology

January 2018 (has links)
abstract: The movement between tectonic plates is accommodated through brittle (elastic) displacement on the plate boundary faults and ductile permanent deformation on the fault borderland. The elastic displacement along the fault can occur in the form of either large seismic events or aseismic slip, known as fault creep. Fault creep mainly occurs at the deep ductile portion of the crust, where the temperature is high. Nonetheless, aseismic creep can also occur on the shallow brittle portion of the fault segments that are characterized by frictionally weak material, elevated pore fluid pressure, or geometrical complexity. Creeping segments are assumed to safely release the accumulated strain(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992) on the fault and also impede propagation of the seismic rupture. The rate of aseismic slip on creeping faults, however, might not be steady in time and instead consist of successive periods of acceleration and deceleration, known as slow slip events (SSEs). SSEs, which aseismically release the strain energy over a period of days to months, rather than the seconds to minutes characteristic of a typical earthquake, have been interpreted as earthquake precursors and as possible triggering factor for major earthquakes. Therefore, understanding the partitioning of seismic and aseismic fault slip and evolution of creep is fundamental to constraining the fault earthquake potential and improving operational seismic hazard models. Thanks to advances in tectonic geodesy, it is now possible to detect the fault movement in high spatiotemporal resolution and develop kinematic models of the creep evolution on the fault to determine the budget of seismic and aseismic slip. In this dissertation, I measure the decades-long time evolution of fault-related crustal deformation along the San Andrea Fault in California and the northeast Japan subduction zone using space-borne geodetic techniques, such as Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR). The surface observation of deformation combined with seismic data set allow constraining the time series of creep distribution on the fault surface at seismogenic depth. The obtained time-dependent kinematic models reveal that creep in both study areas evolves through a series of SSEs, each lasting for several months. Using physics-based models informed by laboratory experiments, I show that the transient elevation of pore fluid pressure is the driving mechanism of SSEs. I further investigate the link between SSEs and evolution of seismicity on neighboring locked segments, which has implications for seismic hazard models and also provides insights into the pattern of microstructure on the fault surface. I conclude that while creeping segments act as seismic rupture barriers, SSEs on these zones might promote seismicity on adjacent seismogenic segments, thus change the short-term earthquake forecast. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2018
16

Suivi temporel de la zone de subduction d'Amérique Centrale et imagerie de la vallée de Mexico / Passive Seismic Monitoring of the Middle America Subduction Zone and Study of the Valley of Mexico

Rivet, Diane 15 February 2012 (has links)
Ces dernières années ont vu le développement d'une nouvelle méthode d'imagerie des structures géologiques basée sur l'utilisation du bruit sismique continu. Dans ce travail nous avons utilisé cette approche dans deux problématiques différentes. La première consiste à réaliser le suivi temporel des vitesses des ondes sismiques dans la croûte lors de séismes lents qui ont eu lieu dans la région de Guerrero au Mexique. Les séismes lents sont des glissements asismiques et transitoires qui ont été découverts récemment dans la lacune sismique de Guerrero. Ils sont considérés comme une part importante de la relaxation des déformations dans le cycle sismique. Les séismes lents affectent le processus de chargement et déchargement de l'interface, il est donc important de comprendre le comportement mécanique de la subduction dans cette région pour mieux évaluer le risque sismique. Dans notre étude, nous avons mesuré les perturbations de vitesse des ondes associées à deux séismes lents en 2006 et 2009-2010 à partir des enregistrements continus du bruit sismique. Pour chacun des deux séismes lents on observe une chute de vitesse : elle s'élève à 0.2% pour celui de 2006 et à 0.8 % pour celui de 2009-2010. Au cours de ces séismes lents, les ondes de longues périodes (>10 s) sont perturbées. A courtes périodes, aucune variation de vitesse n'est observée ce qui suggère qu'un endommagement des couches superficielles de la croûte ne peut pas être à l'origine du changement de vitesse. Par ailleurs, la perturbation de vitesse est reliée au taux de dé- formation plutôt qu'à la déformation elle-même. Cette observation suggère que pendant de forts séismes lents, la croûte chevauchante présente un comportement mécanique non linéaire. Nous pouvons donc utiliser les variations de vitesse comme des marqueurs du taux de déformation du milieu. Enfin, une corrélation entre les trémors non volcaniques et les variations de vitesse suggère qu'une part importante de la déformation résultant des séismes lents est accommodée par la croute chevauchante. La deuxième problématique abordée dans cette thèse est l'imagerie de structures à fort contraste de vitesse et dans lesquelles la propagation des ondes de surface est complexe. Imager et comprendre la propagation des ondes dans la vallée de Mexico est crucial pour l'estimation du risque sismique à la capitale. Nous mesurons la dispersion des ondes de Rayleigh reconstruites à partir d'intercorrélations de bruit de fond sismique. Pour identifier les modes nous utilisons une mesure du rapport spectral des composantes horizontales sur la composante vertical (H/V) sur la coda des séismes que l'on compare avec le rapport H/V théorique. Grâce à cette identification des modes, nous pouvons retrouver le modèle de vitesse de la structure. / Recent years have seen the development of a new method for imaging geological structures based on continuous seismic noise. In this work we used this approach in two different problems. The first is to monitor seismic waves velocity in the crust during slow slip events that occurred in the region of Guerrero in Mexico. These slow slip events are aseismic transients that were observed recently in the seismic gap of Guerrero. They are considered an important part of the strain relaxation in the seismic cycle. Since slow slip events affect the process of loading and unloading of the interface, it is important to understand the mechanical behavior of the subduction in this region to better assess the seismic risk. In our study, we measured wave velocity perturbations associated with two slow slip events in 2006 and 2009-2010 from continuous recordings of seismic noise. For both events we observed a drop in wave speed : it reaches 0.2 % in 2006 and 0.8 % in 2009-2010. During these slow slip events waves of long periods (> 10 s) are disturbed. At short period, no velocity variation is observed suggesting that damage of the superficial layers of the crust cannot produce such velocity perturbation. Moreover, the wave speed change is related to the strain rate rather than the deformation itself. This observation suggests that during strong slow slip events the overriding crust presents a nonlinear mechanical behavior. We can therefore use the velocity variations as a proxy of the strain rate of the medium. Finally, a correlation between non-volcanic tremor and changes in waves speed suggests that part of the deformation resulting from the slow slip events is accommodated by the overriding crust. The second issue addressed in this thesis is imaging geological structures with high velocity contrast in which the propagation of surface waves is complex. Charac- terizing and understanding wave propagation in the Valley of Mexico is crucial for the estimation of seismic risk in Mexico City. We measure the dispersion of Rayleigh waves reconstructed from cross-correlations of seismic noise. To identify the modes of Rayleigh waves we use a measure of the spectral ratio of the horizontal components to the vertical component (H / V) in the coda of earthquakes which are compared with the theoretical H / V. With this identification method, we can find the velocity model of the structure.
17

Short-Term Slow Slip Events at Alaska Subduction Zone and their Correlation with Local Tremors

Weerasinghe, Dhamsith Asiri 23 August 2022 (has links)
No description available.
18

The seismic structures of the U.S. Pacific Northwest and the scaling and recurrence patterns of slow slip events

Gao, Haiying 03 1900 (has links)
xv, 136 p. : ill. (some col.) / The Pacific Northwest of the United States has been tectonically and magmatically active with the accretion of the Farallon oceanic terrane "Siletzia" ∼50 Ma. The accretion of Siletzia terminated the flat-slab subduction of the Farallon slab and initiated the Cascadia subduction zone. In this dissertation, I focus on both the large-scale tectonic structures preserved seismically in the crust and upper mantle, and the small-scale, short-term aseismic processes on the plate interface. I measure the shear-wave splitting trends around eastern Oregon with a dataset of ∼200 seismometers from 2006-2008 to analyze the upper-mantle anisotropy. The delay times between splitted shear-waves range from 0.8 s to 2.7 s. In the High Lava Plains, the fast polarization direction is approximately E-W with average delay time ∼1.8 s. I infer that there must be significant active flow in a roughly E-W direction in the asthenosphere beneath this area. The splitting pattern is more variable and complicated in NE Oregon, where the crust and mantle lithosphere may be a significant contribution. In terms of the imaged seismic velocity structures, I infer that the Eocene sedimentary basins in south-central Washington lie above a magmatically underplated crust of extended Siletzia lithosphere. Siletzia thrusts under the pre-accretion forearc, and its southeast termination is especially strong and sharp southeast of the Klamath-Blue Mountains gravity lineament. Magmatic intrusion has increased upper crustal velocity as in the less active Washington Cascades, but the higher temperatures beneath the magmatically active Oregon Cascades have a dominating effect. To better understand the physical mechanism of slow slip events on the plate interface, I explore the scaling relationships of various source parameters collected mainly from subduction zones worldwide and also other tectonic environments. The source parameter scaling relationships of slow slip events highlight the similarities and differences between slow slip phenomena and earthquakes. These relationships hold implications for the degree of heterogeneity and fault healing characteristics. The recurrence statistics of northern Cascadia events behave weakly time predictable and moderately anti-slip predictable, which may indicate healing between events. This dissertation includes co-authored materials both previously published and submitted for publication. / Committee in charge: Eugene Humphreys, Chairperson; David Schmidt, Member; Ray Weldon, Member; James Isenberg, Outside Member
19

Investigating Earthquake Swarms for Clues of the Driving Mechanisms

Fasola, Shannon Lee 12 November 2020 (has links)
No description available.
20

Sismicité, couplages sismique-asismiques et processus transitoires de déformation dans un système de failles actives : le rift de Corinthe, Grèce / Seismicity, seismic-aseismic couplings and transient deformation processes in an active fault system : the Corinth rift, Greece

Duverger, Clara 29 November 2017 (has links)
La partie ouest du rift de Corinthe, en Grèce, s'ouvre à une vitesse d'environ 15 mm par an générant un taux de déformation parmi les plus élevés au monde, quelques séismes destructeurs de magnitude M>6 par décennie, et une forte activité microsismique irrégulière spatialement et temporellement. Afin de mieux comprendre les mécanismes liés à cette déformation crustale et de préciser les structures majeures actives, ce travail de recherche exploite la base de données sismologiques du Corinth Rift Laboratory de 2000 à 2015 en analysant finement les microséismes et leur évolution spatio-temporelle. La relocalisation globale des sources sismiques ainsi que leur classification en multiplets ont permis de préciser la géométrie des failles et d'identifier des comportements mécaniques différents. La zone ouest, au milieu du golfe, est affectée par des variations de pressions de fluides dans une couche géologique, entraînant des migrations des essaims de microséismes à des vitesses d'environ 50 m par jour. Les multiplets profonds de la partie centrale, près de la côte nord, sont persistants et semblent déclenchés par des épisodes de glissements lents asismiques sur un détachement immature pouvant atteindre la croûte ductile. Le faible pourcentage de déclenchement dynamique par les ondes sismiques suggère que l'état global du système de failles n'est pas au seuil critique de rupture. La magnitude des séismes est corrélée à l'impulsivité initiale de la rupture. Ces résultats précisent la dynamique de déformation du rift, les interactions sismique-asismiques, et permettront d'améliorer les modèles d'aléas sismiques de la région / The western part of the Corinth Rift in Greece is opening at about 15 mm per year, generating one of the highest deformation rates in the world, some destructive earthquakes of magnitude M>6 per decade, and high microseismic activity irregular in space and time. In order to better understand the mechanisms related to this crustal deformation and to specify the major active structures, this research work makes use of the seismological database of the Corinth Rift Laboratory from 2000 to 2015 by finely analyzing microearthquakes and their spatio-temporal evolution. The global relocation of the seismic sources and their classification into multiplets enable to refine the geometry of the faults and to identify different mechanical behaviors. The western zone, in the middle of the gulf, is affected by fluctuations of fluid pore pressures in a geological layer, resulting in microseismic swarm migrations at a velocity of about 50 m per day. The deep multiplets of the central part, near the northern coast, are persistent and appear to be triggered by episodes of slow aseismic slip along an immature detachment, which can reach the ductile crust. The low percentage of dynamic triggering by passing seismic waves suggests that the overall state of the fault system is not at the critical breaking point. The magnitude of earthquakes is correlated with the initial impulsiveness of the rupture. These results specify the dynamics of the rift deformation, the seismic-aseismic interactions, and will make possible the improvement of the seismic hazard models of the region

Page generated in 0.0453 seconds