• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 14
  • 14
  • 11
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etablissement de références dosimétriques dans les faisceaux de rayons X de hautes énergies et de très petites sections (< 1cm²) pour la radiothérapie / Establishment of dosimetric references for high energy X-ray beams of very small field sizes (< 1 cm²) used in radiotherapy

Dufreneix, Stéphane 17 December 2014 (has links)
En tant que laboratoire national pour la métrologie des rayonnements ionisants, le Laboratoire National Henri Becquerel met au point les méthodes de mesures absolues pour établir les références dosimétriques. Il dispose, entre autres, de références dans des faisceaux de rayons X utilisés en radiothérapie et ayant une taille de champ comprise entre 10 et 2 cm de côté. Afin de s’approcher des plus petits champs utilisés en clinique, la miniaturisation des détecteurs absolus n’étant pas possible, il est proposé dans cette thèse de remplacer la dose absorbée en un point par le produit dose surface (PDS). L’applicabilité du PDS mesuré à l’aide de dosimètres dont la surface sensible est plus grande que celle du champ de rayonnement a été vérifiée. Ainsi, un calorimètre graphite avec une surface sensible de 3 cm de diamètre a été conçu, construit et testé. En vue du transfert des références dosimétriques à l’utilisateur, une chambre d’ionisation de même diamètre a elle aussi été réalisée et testée. Son coefficient d’étalonnage en termes de PDS a été déterminé dans des faisceaux circulaires de 2, 1 et 0.75 cm de diamètre avec une incertitude type inférieure à 0.7 %. La distribution relative de la dose absorbée dans l’eau en deux dimensions a été mesurée au moyen d’un dosimètre diamant, d’une chambre d’ionisation PinPoint et de films gafchromiques, pour lesquels un protocole de lecture spécifique a été mis au point. Les résultats dans le faisceau de 2 cm de diamètre ont montré un bon accord entre les approches en termes de PDS et de dose absorbée dans l’eau en un point, après application des facteurs de correction obtenus au moyen de simulations Monte Carlo et des mesures de distribution de dose. Les coefficients d’étalonnage de la chambre d’ionisation de grandes dimensions établis dans les champs de 1 et 0.75 cm de diamètre sont compatibles aux incertitudes près mais s’écartent de -2.6 % de celui établi dans le champ de 2 cm de diamètre. L’utilisation du PDS nécessite donc une surface de détection notablement plus grande que la section du mini-Faisceau. / The French primary standard dosimetry laboratory “Laboratoire National Henri Becquerel” is in charge of the establishment of dosimetric standards for ionizing radiation beams. Absolute dose measurements are thus available for X-Ray beams used in radiotherapy for field sizes between 10 and 2 cm. Since the miniaturization of absolute dosimeters is not possible for smaller field sizes, a dose area product (DAP) has been suggested as a substitute to the absorbed dose at a point.In order to measure a DAP with dosimeters which sensitive surface is larger than the beam, a graphite calorimeter with a sensitive surface of 3 cm diameter was designed, built and tested. An ionization chamber with the same diameter was realized and tested to transfer the dosimetric references to the end users. Its calibration factor in terms of DAP was determined in circular beams of 2, 1 and 0.75 cm diameter with an uncertainty smaller than 0.7 %. The two-Dimension relative dose distribution was measured thanks to a diamond dosimeter, a PinPoint ionization chamber and gafchromic films, using a specific protocol.Both approaches, respectively based on a PDS and an absorbed dose to water at a point, were in good agreement in the 2 cm beam. Correction factors determined from Monte Carlo simulations and measured dose distributions were needed for this comparison. The calibration factor of the large ionization chamber in the 1 and 0.75 cm diameter beams were in good agreement within the uncertainties but a gap of -2.6 % was found with the one established in the 2 cm diameter beam. As a result, the DAP can be used if the sensitive surface is much larger than the beam section.
2

Small field dose measurements with Gafchromic film

Underwood, Ryan John 09 April 2013 (has links)
Purpose: To examine the dosimetric characteristics of Gafchromic EBT3 film when measuring small fields of radiation, and compare it against other common radiation detectors. Methods and Materials: EBT3 film was placed in a solid water phantom and irradiated with 6MV photons, field sizes from 10x10cm2 down to 6x6mm2. The films were scanned with a Vidar DosimetryPRO Advantage Red scanner, and analyzed with RIT113 software. The films were also scanned at different orientations and times to quantify the discrepancies associated with scanning orientation and post-exposure darkening. The same fields were measured with a PTW TN30013 farmer chamber, an Exradin T1 cylindrical ion chamber, a PTW parallel plate ion chamber, and a Sun Nuclear Edge Detector (diode). Output factors were calculated for each detector and compared for accuracy. The output factors were measured from a Varian Clinac iX, Clinac 21EX, Trilogy, and TrueBeam; as well as a Novalis Tx. The outputs from different machines at different clinics were compared. Results: The EBT3 film and Edge Detector were the only detectors that succeeded in accurately measuring the output from all field sizes; the ion chambers were too large and failed for field sizes below 4x4cm2 due to volume averaging. The dose measured with the film increased by an average of 8.8% after one week post-irradiation. The dose measured was also reduced by an average of 4.4% by scanning the film in landscape orientation, as opposed to portrait orientation. It was shown that the output factors for the smallest field of 6x6mm2--successfully measured with film and diode--varied between 0.54-0.74 for five different machines at three different clinics. Conclusions: The feasibility of using Gafchromic EBT3 film to measure very small fields of radiation is confirmed. Of the other 4 detectors used, only the diode was shown to be capable of accurately measuring small fields of radiation. The need to optimize the film dosimetry process--including the time films are scanned post-irradiation, the consistency of the scanning orientation of the calibration and subsequent films, and the measurement procedure on the computer software--is highlighted.
3

Monte Carlo Simulations of Chemical Vapour Deposition Diamond Detectors

Baluti, Florentina January 2009 (has links)
Chemical Vapour Deposition (CVD) diamond detectors were modelled for dosimetry of radiotherapy beams. This was achieved by employing the EGSnrc Monte Carlo (MC) method to investigate certain properties of the detector, such as size, shape and electrode materials. Simulations were carried out for a broad 6 MV photon beam, and water phantoms with both uniform and non-uniform voxel dimensions. A number of critical MC parameters were investigated for the development of a model that can simulate very small voxels. For a given number of histories (100 million), combinations of the following parameters were analyzed: cross section data, boundary crossing algorithm and the HOWFARLESS option, with the rest of the transport parameters being kept at default values. The MC model obtained with the optimized parameters was successfully validated against published data for a 1.25 MeV photon beam and CVD diamond detector with silver/carbon/silver structure with thicknesses of 0.07/0.2/0.07 cm for the electrode/detector/electrode, respectively. The interface phenomena were investigated for a 6 MV beam by simulating different electrode materials: aluminium, silver, copper and gold for perpendicular and parallel detector orientation with regards to the beam. The smallest interface phenomena were observed for parallel detector orientation with electrodes made of the lowest atomic number material, which was aluminium. The simulated percentage depth dose and beam profiles were compared with experimental data. The best agreement between simulation and measurement was achieved for the detector in parallel orientation and aluminium electrodes, with differences of approximately 1%. In summary, investigations related to the CVD diamond detector modelling revealed that the EGSnrc MC code is suitable for simulation of small size detectors. The simulation results are in good agreement with experimental data and the model can now be used to assist with the design and construction of prototype diamond detectors for clinical dosimetry. Future work will include investigating the detector response for different energies, small field sizes, different orientations other than perpendicular and parallel to the beam, and the influence of each electrode on the absorbed dose.
4

Monte Carlo Simulations of Chemical Vapour Deposition Diamond Detectors

Baluti, Florentina January 2009 (has links)
Chemical Vapour Deposition (CVD) diamond detectors were modelled for dosimetry of radiotherapy beams. This was achieved by employing the EGSnrc Monte Carlo (MC) method to investigate certain properties of the detector, such as size, shape and electrode materials. Simulations were carried out for a broad 6 MV photon beam, and water phantoms with both uniform and non-uniform voxel dimensions. A number of critical MC parameters were investigated for the development of a model that can simulate very small voxels. For a given number of histories (100 million), combinations of the following parameters were analyzed: cross section data, boundary crossing algorithm and the HOWFARLESS option, with the rest of the transport parameters being kept at default values. The MC model obtained with the optimized parameters was successfully validated against published data for a 1.25 MeV photon beam and CVD diamond detector with silver/carbon/silver structure with thicknesses of 0.07/0.2/0.07 cm for the electrode/detector/electrode, respectively. The interface phenomena were investigated for a 6 MV beam by simulating different electrode materials: aluminium, silver, copper and gold for perpendicular and parallel detector orientation with regards to the beam. The smallest interface phenomena were observed for parallel detector orientation with electrodes made of the lowest atomic number material, which was aluminium. The simulated percentage depth dose and beam profiles were compared with experimental data. The best agreement between simulation and measurement was achieved for the detector in parallel orientation and aluminium electrodes, with differences of approximately 1%. In summary, investigations related to the CVD diamond detector modelling revealed that the EGSnrc MC code is suitable for simulation of small size detectors. The simulation results are in good agreement with experimental data and the model can now be used to assist with the design and construction of prototype diamond detectors for clinical dosimetry. Future work will include investigating the detector response for different energies, small field sizes, different orientations other than perpendicular and parallel to the beam, and the influence of each electrode on the absorbed dose.
5

A Novel Equivalent Squares Formalism for use in Small Field Dosimetry

Qureshi, Aleem January 2017 (has links)
No description available.
6

A MONTE CARLO SIMULATION AND DECONVOLUTION STUDY OF DETECTOR RESPONSE FUNCTION FOR SMALL FIELD MEASUREMENTS

FENG, YUNTAO January 2006 (has links)
No description available.
7

Use of ClearView Gel Dosimeter for Quality Assurance and Testing of Stereotactic Radiosurgery

Courter, Erik Joseph-Leonard 27 June 2016 (has links)
No description available.
8

Microcomputed tomography dosimetry and image quality in preclinical image-guided radiation therapy

Johnstone, Christopher Daniel 29 April 2019 (has links)
Motivated by the need to standardize preclinical imaging for image-guided radiation therapy (IGRT), we examine the parameters that influence microcomputed tomography (microCT) scans in the realm of image quality and absorbed dose to tissue, including therapy beam measurements of small fields. Preclinical radiation research aims to understand radiation-induced effects in living tissues to improve quality of life. Small targets and low kilovoltage x-rays create challenges that do not arise in clinical radiation therapy. Evidence based on our multi-institutional study reveals a considerable aberration in microCT image quality from one institution to the next. We propose the adoption of recommended tolerance levels to provide a baseline for producing satisfactory and reproducible microCT image quality scans for accurate dose delivery in preclinical IGRT. Absorbed dose imparted by these microCT images may produce deterministic effects that can negatively influence a radiobiological study. Through Monte Carlo (MC) methods we establish absorbed microCT imaging dose to a variety of tissues and murine sizes for a comprehensive combination of imaging parameters. Radiation beam quality in the small confines of a preclinical irradiator is also established to quantify the effects of beam scatter on half-value layer measurements. MicroCT scans of varying imaging protocols are also compared for murine subjects. Absorbed imaging dose to tissues are established and presented alongside their respective microCT images, providing a visual bridge to systematically link image quality and imaging dose. We then characterize a novel small plastic scintillating dosimeter to experimentally measure microCT imaging and therapy beams in real-time. The presented scintillating dosimeter is specifically characterized for the low energies and small fields found in preclinical research. Beam output is measured for small fields previously only achievable using film. Finally, quality assurance tests are recommended for a preclinical IGRT unit. Within this dissertation, a narrative is presented for guiding preclinical radiotherapy towards producing high quality microCT images with an understanding of the absorbed imaging dose deposited to tissues, including providing a tool to measure small radiation fields. / Graduate
9

Improving Treatment Dose Accuracy in Radiation Therapy

Wong, Tony Po Yin, tony.wong@swedish.org January 2007 (has links)
The thesis aims to improve treatment dose accuracy in brachytherapy using a high dose rate (HDR) Ir-192 stepping source and in external beam therapy using intensity modulated radiation therapy (IMRT). For HDR brachytherapy, this has been achieved by investigating dose errors in the near field and the transit dose of the HDR brachytherapy stepping source. For IMRT, this study investigates the volume effect of detectors in the dosimetry of small fields, and the clinical implementation and dosimetric verification of a 6MV photon beam for IMRT. For the study of dose errors in the near field of an HDR brachytherapy stepping source, the dose rate at point P at 0.25 cm in water from the transverse bisector of a straight catheter was calculated with Monte Carlo code MCNP 4.A. The Monte Carlo (MC) results were used to compare with the results calculated with the Nucletron Brachytherapy Planning System (BPS) formalism. Using the MC calculated radial dose function and anisotropy function with the BPS formalism, 1% dose calculation accuracy can be achieved even in the near field with negligible extra demand on computation time. A video method was used to analyse the entrance, exit and the inter-dwell transit speed of the HDR stepping source for different path lengths and step sizes ranging from 2.5 mm to 995 mm. The transit speeds were found to be ranging from 54 to 467 mm/s. The results also show that the manufacturer has attempted to compensate for the effects of inter-dwell transit dose by reducing the actual dwell time of the source. A well-type chamber was used to determine the transit doses. Most of the measured dose differences between stationary and stationary plus inter-dwell source movement were within 2%. The small-field dosimetry study investigates the effect of detector size in the dosimetry of small fields and steep dose gradients with a particular emphasis on IMRT measurements. Due to the finite size of the detector, local discrepancies of more than 10 % are found between calculated cross profiles of intensity modulated beams and intensity modulated profiles measured with film. A method to correct for the spatial response of finite sized detectors and to obtain the
10

Silicon Diode Dose Response Correction in Small Photon Fields

Omar, Artur January 2010 (has links)
<p>Silicon diodes compared to other types of dosimeters have several attractive properties, such as an excellent spatial resolution, a high sensitivity, and clinically practical to use. These properties make silicon diodes a preferred dosimeter for relative dosimetry for several types of measurements in small field dosimetry, e.g., stereotactic treatments and intensity modulated radiotherapy (IMRT). Silicon diodes are, however, limited by an energy dependent response variation in photon beams, resulting in that the diode readout per dose to the phantom medium varies with photon spectral changes, thereby introducing a significant uncertainty in the measured data. The traditional solution for the energy dependent over-response caused by low-energy photons is to use diodes with a shielding filter of high atomic number. These shielded diodes, however, show an incorrect readout for small fields due to electrons scattered from the shielding (Griessbach <em>et al</em>. 2005). In regions with degraded lateral electron equilibrium (LEE) shielded diodes over-respond due to an increased degree of LEE, as a consequence of the high density shielding (Lee <em>et al</em>. 2002).</p><p>In this work a prototype software that corrects for the energy dependent response of a silicon diode is developed and validated for small field sizes. The developed software is based on the novel concept of Monte Carlo (MC) simulated fluence pencil beam kernels to calculate spectra (Eklund and Ahnesjö 2008), and the spectra based silicon diode response model proposed by Eklund and Ahnesjö (2009). The software was also extended to include correction of ionization chambers, for the energy dependent Spencer-Attix water/air stopping power ratio (<em>s</em><sub>w,air</sub>). The calculated <em>s</em><sub>w,air</sub> are shown to be in excellent agreement with published values to better than 0.1% for most values, the maximum deviation being 0.3%.</p><p>Measured relative depth doses, relative profiles, and output factors in water, for small square field sizes, for 6 MV and 15 MV clinical photon beams are presented in this work. The results show that the unshielded Scanditronix-Wellhöfer EFD<sup>3G</sup> silicon diode response, corrected by the developed software, is in excellent agreement with reference ionization chamber measurements (corrected for change in <em>s</em><sub>w,air</sub>), the maximum deviation being 0.4%.</p><p>Measurements with two types of shielded diodes, namely Scanditronix-Wellhöfer PFD silicon diodes (FP1990 and FP2730), are also included in this work. The shielded diodes are shown to have an over-response as large as 2-3.5% for field sizes smaller than 5 cm x 5 cm. The presented results also suggest a difference in accuracy as large as 0.5-1% between the two types of shielded diodes, where the spectral composition at the measurement position dictates which type of diode is more accurate.</p><p>The fast correction of silicon diodes provided by the developed software is more accurate than shielded diodes for small field sizes, and can in radiotherapeutic clinical practice increase the dosimetric accuracy of silicon diodes.</p>

Page generated in 0.0699 seconds