Spelling suggestions: "subject:"show melting"" "subject:"slow melting""
1 |
Performance Analysis and Optimization of a Ground Source Heat Pipe with Carbon Dioxide for Thermal Management of Engineered Pavements and TurfAlhajjaji, Amr Abdurahman 13 July 2022 (has links)
No description available.
|
2 |
Analysis of conjugate heat transfer in tube-in-block heat exchangers for some engineering applicationsGari, Abdullatif Abdulhadi 01 June 2006 (has links)
This project studied the effect of different parameters on the conjugate heat transfer in tube-in-block heat exchangers for various engineering applications. These included magnetic coolers (or heaters) associated with a magnetic refrigeration system, high heat flux coolers for electronic equipment, and hydronic snow melting system embedded in concrete slabs. The results of this research will help in designing the cooling/heating systems and select their appropriate geometrical dimensions and material for specific applications. Types of problems studied in this project are: steady state circular microchannels with heat source in the gadolinium substrate, transient heat transfer in circular microchannels with time varying heat source in a gadolinium substrate, transient heat transfer in composite trapezoidal microchannels of silicon and gadolinium with constant and time varying heat source, steady state heat transfer in microchannels using fluids suspended with nanoparticl
es, and analysis of steady state and transient heat transfer in a hydronic snow melting system. For each of these problems a numerical simulation model was developed. The mass, momentum, and energy conservation equations were solved in the fluid region and energy conservation in the solid region of the heat exchanger to arrive at the velocity and temperature distributions. Detailed parametric study was carried out for each problem. Parameters were Reynolds number, heat source value, channel diameter or channel height, solid materials and working fluids. Results are presented in terms of solid-fluid interface temperature, heat flow rate, heat transfer coefficient, and Nusselt number along the length of the channel and with the progression of time. The results showed that an increase in Reynolds number decreases the interface temperature but increases the heat flow rate and Nusselt number. When the heat source varied with time, by applying and removing the magnetic field, the interface
temperature, heat flow rate, and Nusselt number attained a periodic variation with time. The decrease in the diameter at constant Reynolds number decreases the interface temperature and increases the heat flow rate at the fluid-solid interface.
|
3 |
Simulering av energianvändning och snösmältning för markvärme : Styrsystemets och geometrins påverkan / Simulating energy use and snow melting time of heated pavement : The effects of the control system and geometryMatteusson, Eric January 2022 (has links)
Ett hållbart samhälle behöver ha en klimatvänlig snöröjning. Den traditionella snöröjningen är associerad med en del problem, exempelvis bidrar saltspridning till ökad korrosion av vägar och fordon, förorening av både ytvatten och grundvatten samt ökad mobilitet av tungmetaller. Ett hållbart alternativ är hydronisk markvärme, även kallat Hydronic Asphalt Pavement, HAP. Snösmältning med ett HAP-system sker genom att en varm fluid cirkulerar i rör under ytan som ska hållas snöfri. HAP- systemets energianvändning och snösmältningskapacitet är beroende av hur de värmande rören är placerade samt vilket styrsystem som används. Rapporten syftar till att öka förståelsen för hur styrsystemet och geometrin påverkar HAP-systemets energianvändning och snösmältningstid. En numerisk 2D-modell konstrueras i COMSOL Multiphysics vilken användes för att simulera styrsystemets och geometrins påverkan på HAP-systemet. Snön förenklades som en värmesänka till vilken modellen överförde värme via ett värmeflöde. En avgränsning i rapporten var att det bortsågs från vatten på ytan för att förenkla modellen. Resultatet bekräftar att HAP-systemets styrsystem och geometri har stor påverkan på dess energianvändning och snösmältningstid. Generellt ger en hög energianvändning kortare tid med snö på ytan. Det gör att om det är önskvärt att ha ett energisnålt system behöver en avvägning mellan energianvändning och tid med snö på ytan göras. Ett intermittent styrsystem bedöms vara ett bra alternativ då det ger relativt låg energianvändning och kort tid med snö på ytan. Om det inte finns en begränsning i energianvändning finns det flera styrsystem som kan ge en snöfri yta hela året. Ytans temperatur är den bästa styrparametern att använda för att minska både energianvändning och snösmältningstid. Då värmerören placeras grundare ökar energibehovet och tiden med snö på ytan minskar. Det är möjligt att placera värmerören djupare med bibehållen snöfri tid på ytan om styrsystemet anpassas efter djupet. En viktig anpassning är att styrsystemet ger en förvärmningseffekt, exempelvis att vägen börjar värmas då vägytans temperatur understiger 1°C. En ökning av avståndet mellan värmerören, CCrör, minskar energibehovet och tiden med snö på ytan ökar. Det bedöms vara möjligt att öka CCrör till 350 mm utan att generera för stora skillnader i temperaturprofilen över ytan då rördjupet är 100 mm eller 160 mm. Det styrsystem som gynnas mest av att öka CCrör till 350 mm är ”Grundfall”, vilken värmer vägen under hela vinterhalvåret. Energianvändningen minskar då med 132 kWh/m2 (22,9%) och den längsta ihållande tiden med snö på ytan ökar från 0 h till 4 h. Beroende på vad kraven på ytan är kan det vara möjligt att ha 350 mm som CCrör för de andra styrsystemen. HAP-systemet blir resurseffektivare och billigare vid konstruktion ju större CCrör som används, vilket är önskvärt. Resultatet visar att det är en liten minskning i energianvändning och snösmältningstid då isolering är under värmerören jämfört med ingen isolering. Detbedöms därför vara omotiverat ur både energisynpunkt och snösmältningsmässigt att använda isolering under värmerören på det sätt som undersökts i detta arbete. Det är en markant skillnad i energianvändning mellan ett styrsystem som är enklare och ett som är mer komplext. Om styrsystemet ”Intermittent” används i stället för ”Grundfall” vid Hamngatan i Karlstad skulle det generera en minskad energianvändning av 4,37 GWh fjärrvärme (58,5%), vilket motsvarar 199 ton CO2 per år. Resultatet understryker vikten att ett optimalt styrsystem används. Även en liten skillnad i energianvändning kan ge stora energimässiga besparingar eftersom det ofta är stora ytor som värms med ett HAP-system. För att kunna avgöra vilket styrsystem som är bäst lämpat behöver kraven på ytan bestämmas, vilket inte görs i arbetet, utan resultaten hålls generella. / A sustainable society need to have a climate friendly snow removal system. The traditional snow removal systems generate some problems, for example increased corrosion of roads and vehicles, contamination of both surface- and ground water and increased mobility of heavy metals. A sustainable alternative is Hydronic Asphalt Pavement, HAP. Snow melting with a HAP-system is generated by circulating a warm fluid in pipes underneath the surface that is to be snow free. Both the energy usage and snow melting time is affected by how the heat pipes are placed and which control system that is used. The report aims to increase the knowledge of how both the control system and geometry of the heating pipes affect the energy use and snow melting time of a HAP-system. A numerical 2D-model was constructed in COMSOL Multiphysics which was used to simulate how the control system and geometry of the heating pipes effects the HAP-system. The snow was simplified to a heat sink, to which the model could transfer heat through a convective heat flux. A demarcation of the study is that water on the surface is ignored to simplify the model. The results confirms that both the control system and geometry of the heat pipes greatly affects the energy usage and snow melting time. In general, a large energy usage generates a shorter total time with snow on the surface. It is therefore needed to do a balancing between energy usage and the total time with snow on the surface if the energy usage is to be restricted. An intermittent control system is considered to be a good alternative as it gives a relative low energy usage and short time with snow on the surface. If there is no limitation on the energy use, there is several control systems that gives a snow free surface throughout the year. The surface temperature is the best parameter for the control system as it minimizes both the energy usage and snow melting time. When the heating pipes is placed shallower the energy usage is increased and the time with snow on the surface decreases. It is possible to place the heating pipes at a greater depth and still have the same functionality of the HAP-system if the control system is adjusted accordingly. One important adjustment for the control system is preheating, for example that the heating is turned on when the air temperature is less than 1°C. An increase of CCrör decrease the energy usage and increase the time with snow on the surface. It is possible to increase CCrör to 350 mm and still have a smooth temperature profile if the heating pipes is placed 100 mm or 160 mm beneath the road surface. The control system that gains the most out of an increase in !!!ö! to 350 mm is “Grundfall”, which reduce its energy usage with 132 kWh/m2 (22,9%) and the longest time with snow on the surface is increased from 0 h to 4 h. Depending on which demands the surface is to meet, it is possible to have 350 mm as CCrör for the other control systems. An increase in CCrör makes the HAP-system more resource efficient and cheaper to build, which is desirable. The results show a small decrease in energy usage and snow melting time when isolation is underneath the heating pipes compared to without isolation. It is therefore deemed to be unmotivated to use isolation as it is used in this paper, in both energy use- and snow melting time-perspective. There is a significant difference in energy use between a simple and more complex control system. If the control system “Intermittent” is used instead of “Grundfall” at Hamngatan in Karlstad the energy usage would decrease with 4,37 GWh heat (58,5%) and 199 ton of CO2. The result underlines the importance of an optimal control system for a HAP-system. Even a small change in energy consumption can generate large energy savings due to the scale of the surfaces that is heated with HAP-systems. To be able to decide which control system that is the best suited, the demand on the surface needs to be set. The demands are not set in this paper in order to keep the results general.
|
4 |
Modifying Gutter Heating with Meteorological Data : A study on minimizing energy use in roof gutter heating systems by using meteorological dataKhotyaintsev, Matviy, Rådström Thörnblom, Albin, Winther, Simon, Åsberg, Joel January 2024 (has links)
This report aims to investigate the possibility of making roof gutter heating systems more energy efficient while maintaining their performance. With a societal target of becoming climate-neutral, all energy use needs to be minimized and without previous research on the subject, real estate owners may have overused electricity in their efforts. The report assesses available conventional systems, how they work, and their composition. With the help of meteorological data a new system was created that would reduce energy use drastically. The findings state that depending on the earlier system installed by companies the new improved system would only use between 2.5-52% of the energy used by the conventional systems. This is largely because the conventional systems are primitive and has not been updated to a central and internet-connected control system. It is this implementation of online meteorological data and using that data in developed dynamic controlling systems that has led to a decrease in energy use for roof gutter heating systems.
|
5 |
Mécanismes et effets de la fonte des accumulations neigeuses sur le fonctionnement hydrologique du Lignon du Forez, Massif Central, France. / Mechanisms and effects of melting of snow accumulations on the hydrological functionning of the Lignon du Forez, Massif Central, France.Bouron, Gaël 22 November 2013 (has links)
Ce travail de thèse propose une méthodologie d’instrumentation reposant sur plusieurs outils hydrologiques, géophysiques et géochimiques afin de quantifier l’apport nival dans les débits du Lignon. Cette instrumentation consiste en un suivi des échanges aux différents compartiments/interfaces hydrologiques que forment l’atmosphère, la neige, le sol et les cours d’eau au cours des saisons. La neige, et surtout l’équivalent en eau liquide qu’elle représente, est fondamentale pour la compréhension du fonctionnement des sources du Lignon, situées à l’aval direct d’une congère de grand volume. Ce volume d’eau est stocké durant la saison froide pour être restitué lors de la fonte printanière. Cette restitution est loin d’être homogène dans le Haut Lignon, en raison de la forte variabilité spatio-temporelle des paramètres qui la pilotent.L’infiltration de l’eau alors produite est une étape clef dans le comportement hydrologique du Lignon au printemps. La structure du sol à proximité des sources explique également la forte dépendance des sources du Lignon par rapport aux précipitations neigeuses. Cette dépendance est particulièrement visible lors de la fonte de la neige, qui modifie à très court terme les débits aux sources. Cette relation neige-pluie-débit met en évidence une alimentation superficielle pluvio-neigeuse prépondérante par rapport aux débits issus d’eau plus profonde, mais variable au cours de l’année.La méthode d’instrumentation employée, adaptée à l’hydrologie locale employée, permet de corroborer les résultats obtenus avec une précision appréciable, tout en ouvrant de nouvelles perspectives d’application à d’autres bassins versants d’altitude. / This work proposes a methodology for an instrumentation based on several hydrological, geophysical and geochemical tools, to quantify the contribution of snowmelting proportions in the Lignon. This instrumentation is a monitoring of the different compartments / hydrological interfaces made up by atmosphere, snow, soil and rivers throughout the seasons.Snow, and especially the snow water equivalent, is fundamental to a better hydrological understanding of the sources of the Lignon, located directly downstream of a large snowdrift. This amount of water is stored during the cold season, to be returned during the spring melting. This return is heterogeneous in the top of the Lignon, due to the high spatial and temporal variability of parameters leading the melting.The infiltration of water therefore produced is a key step in the hydrological behavior of the Lignon during the spring time, which can be potentially more affected by the freezing of the ground, which significantly increases surface runoff.Soil structure near sources also explains the strong dependence of the sources of the Lignon towards snowfalls and rains. This dependence is especially noticeable at the snow melting that changes with very short term the flows at the sources.This snow-rainfall-runoff relationship highlights a predominant rain-snow surface supply, in comparison with the deeper water flows, and variable during the year.This instrumentation method, adapted to the local scale hydrology, allows corroborating the results obtained with a good accuracy, while opening new opportunities for application to other altitude watersheds.
|
6 |
Characterizing particulate carbon using dielectric property measurementsSyk, Madeleine, Vollmer, Joakim January 2018 (has links)
Interest in effects of carbonaceous particles in the atmosphere has recently taken an upswing due to knowledge of how these particles affect our environment. Carbonaceous aerosols are characterized by their dark color, giving them the ability to absorb both incoming and outgoing radiation of all wavelengths in the atmosphere. If these particles are deposited on snow or ice they blacken the surface, with an increased rate of melting as a consequence. These particles play a significant role in climate change and it is important to characterize the particles in order to determine their environmental impact and their origin. In this thesis, two non-destructive dielectric measurement approaches for characterizing carbonaceous particles at microwave frequencies were explored: measurements with an impedance analyzer and measurements using a cavity resonator. Measurements were carried out on quartz filters containing concentrations of carbon normally found in snow in northern Scandinavia. To validate the carbon concentration on the filters a field trip to northern Sweden was conducted. Snow samples were collected and analyzed in regards of carbon content, confirming that the amount of carbon on the filters were accurate. The impedance analyzer showed great uncertainty and the results were not precise enough to determine the credibility of the approach. Measurements with the cavity resonator showed some promising results due to its extreme sensitivity but require adjustments to distinguish different particle types from each other. Thus, it is expected that the use of a cavity resonator operating at microwave frequencies will become an applicable method for characterizing carbonaceous particles in the future.
|
Page generated in 0.0694 seconds