1 |
Visual analytics of topics in twitter in connection with political debates / Análise visual de tópicos no Twitter em conexão com debates políticosCarvalho, Eder José de 04 May 2017 (has links)
Social media channels such as Twitter and Facebook often contribute to disseminate initiatives that seek to inform and empower citizens concerned with government actions. On the other hand, certain actions and statements by governmental institutions, or parliament members and political journalists that appear on the conventional media tend to reverberate on the social media. This scenario produces a lot of textual data that can reveal relevant information on governmental actions and policies. Nonetheless, the target audience still lacks appropriate tools capable of supporting the acquisition, correlation and interpretation of potentially useful information embedded in such text sources. In this scenario, this work presents two system for the analysis of government and social media data. One of the systems introduces a new visualization, based on the river metaphor, for the analysis of the temporal evolution of topics in Twitter in connection with political debates. For this purpose, the problem was initially modeled as a clustering problem and a domain-independent text segmentation method was adapted to associate (by clustering) Twitter content with parliamentary speeches. Moreover, a version of the MONIC framework for cluster transition detection was employed to track the temporal evolution of debates (or clusters) and to produce a set of time-stamped clusters. The other system, named ATR-Vis, combines visualization techniques with active retrieval strategies to involve the user in the retrieval of Twitters posts related to political debates and associate them to the specific debate they refer to. The framework proposed introduces four active retrieval strategies that make use of the Twitters structural information increasing retrieval accuracy while minimizing user involvement by keeping the number of labeling requests to a minimum. Evaluations through use cases and quantitative experiments, as well as qualitative analysis conducted with three domain experts, illustrates the effectiveness of ATR-Vis in the retrieval of relevant tweets. For the evaluation, two Twitter datasets were collected, related to parliamentary debates being held in Brazil and Canada, and a dataset comprising a set of top news stories that received great media attention at the time. / Mídias sociais como o Twitter e o Facebook atuam, em diversas situações, como canais de iniciativas que buscam ampliar as ações de cidadania. Por outro lado, certas ações e manifestações na mídia convencional por parte de instituições governamentais, ou de jornalistas e políticos como deputados e senadores, tendem a repercutir nas mídias sociais. Como resultado, gerase uma enorme quantidade de dados em formato textual que podem ser muito informativos sobre ações e políticas governamentais. No entanto, o público-alvo continua carente de boas ferramentas que ajudem a levantar, correlacionar e interpretar as informações potencialmente úteis associadas a esses textos. Neste contexto, este trabalho apresenta dois sistemas orientados à análise de dados governamentais e de mídias sociais. Um dos sistemas introduz uma nova visualização, baseada na metáfora do rio, para análise temporal da evolução de tópicos no Twitter em conexão com debates políticos. Para tanto, o problema foi inicialmente modelado como um problema de clusterização e um método de segmentação de texto independente de domínio foi adaptado para associar (por clusterização) tweets com discursos parlamentares. Uma versão do algorimo MONIC para detecção de transições entre agrupamentos foi empregada para rastrear a evolução temporal de debates (ou agrupamentos) e produzir um conjunto de agrupamentos com informação de tempo. O outro sistema, chamado ATR-Vis, combina técnicas de visualização com estratégias de recuperação ativa para envolver o usuário na recuperação de tweets relacionados a debates políticos e associa-os ao debate correspondente. O arcabouço proposto introduz quatro estratégias de recuperação ativa que utilizam informação estrutural do Twitter melhorando a acurácia do processo de recuperação e simultaneamente minimizando o número de pedidos de rotulação apresentados ao usuário. Avaliações por meio de casos de uso e experimentos quantitativos, assim como uma análise qualitativa conduzida com três especialistas ilustram a efetividade do ATR-Vis na recuperação de tweets relevantes. Para a avaliação, foram coletados dois conjuntos de tweets relacionados a debates parlamentares ocorridos no Brasil e no Canadá, e outro formado por um conjunto de notícias que receberam grande atenção da mídia no período da coleta.
|
2 |
Visual analytics of topics in twitter in connection with political debates / Análise visual de tópicos no Twitter em conexão com debates políticosEder José de Carvalho 04 May 2017 (has links)
Social media channels such as Twitter and Facebook often contribute to disseminate initiatives that seek to inform and empower citizens concerned with government actions. On the other hand, certain actions and statements by governmental institutions, or parliament members and political journalists that appear on the conventional media tend to reverberate on the social media. This scenario produces a lot of textual data that can reveal relevant information on governmental actions and policies. Nonetheless, the target audience still lacks appropriate tools capable of supporting the acquisition, correlation and interpretation of potentially useful information embedded in such text sources. In this scenario, this work presents two system for the analysis of government and social media data. One of the systems introduces a new visualization, based on the river metaphor, for the analysis of the temporal evolution of topics in Twitter in connection with political debates. For this purpose, the problem was initially modeled as a clustering problem and a domain-independent text segmentation method was adapted to associate (by clustering) Twitter content with parliamentary speeches. Moreover, a version of the MONIC framework for cluster transition detection was employed to track the temporal evolution of debates (or clusters) and to produce a set of time-stamped clusters. The other system, named ATR-Vis, combines visualization techniques with active retrieval strategies to involve the user in the retrieval of Twitters posts related to political debates and associate them to the specific debate they refer to. The framework proposed introduces four active retrieval strategies that make use of the Twitters structural information increasing retrieval accuracy while minimizing user involvement by keeping the number of labeling requests to a minimum. Evaluations through use cases and quantitative experiments, as well as qualitative analysis conducted with three domain experts, illustrates the effectiveness of ATR-Vis in the retrieval of relevant tweets. For the evaluation, two Twitter datasets were collected, related to parliamentary debates being held in Brazil and Canada, and a dataset comprising a set of top news stories that received great media attention at the time. / Mídias sociais como o Twitter e o Facebook atuam, em diversas situações, como canais de iniciativas que buscam ampliar as ações de cidadania. Por outro lado, certas ações e manifestações na mídia convencional por parte de instituições governamentais, ou de jornalistas e políticos como deputados e senadores, tendem a repercutir nas mídias sociais. Como resultado, gerase uma enorme quantidade de dados em formato textual que podem ser muito informativos sobre ações e políticas governamentais. No entanto, o público-alvo continua carente de boas ferramentas que ajudem a levantar, correlacionar e interpretar as informações potencialmente úteis associadas a esses textos. Neste contexto, este trabalho apresenta dois sistemas orientados à análise de dados governamentais e de mídias sociais. Um dos sistemas introduz uma nova visualização, baseada na metáfora do rio, para análise temporal da evolução de tópicos no Twitter em conexão com debates políticos. Para tanto, o problema foi inicialmente modelado como um problema de clusterização e um método de segmentação de texto independente de domínio foi adaptado para associar (por clusterização) tweets com discursos parlamentares. Uma versão do algorimo MONIC para detecção de transições entre agrupamentos foi empregada para rastrear a evolução temporal de debates (ou agrupamentos) e produzir um conjunto de agrupamentos com informação de tempo. O outro sistema, chamado ATR-Vis, combina técnicas de visualização com estratégias de recuperação ativa para envolver o usuário na recuperação de tweets relacionados a debates políticos e associa-os ao debate correspondente. O arcabouço proposto introduz quatro estratégias de recuperação ativa que utilizam informação estrutural do Twitter melhorando a acurácia do processo de recuperação e simultaneamente minimizando o número de pedidos de rotulação apresentados ao usuário. Avaliações por meio de casos de uso e experimentos quantitativos, assim como uma análise qualitativa conduzida com três especialistas ilustram a efetividade do ATR-Vis na recuperação de tweets relevantes. Para a avaliação, foram coletados dois conjuntos de tweets relacionados a debates parlamentares ocorridos no Brasil e no Canadá, e outro formado por um conjunto de notícias que receberam grande atenção da mídia no período da coleta.
|
3 |
Tillförlitlighet hos Big Social Data : En fallstudie om upplevd problematik kopplat till beslutfattande i en organisationskontextRangnitt, Eric, Wiljander, Louise January 2020 (has links)
Den växande globala användningen av sociala medier skapar enorma mängder social data online, kallat för Big Social Data (BSD). Tidigare forskning lyfter problem med att BSD ofta har bristande tillförlitlighet som underlag vid beslutsfattande och att det är starkt kopplat till dataoch informationskvalitet. Det finns dock en avsaknad av forskning som redogör för praktikers perspektiv på detta. Därför undersökte denna studie vad som upplevs problematiskt kring transformation av BSD till tillförlitlig information för beslutsfattande i en organisationskontext, samt hur detta skiljer sig i teori jämfört med praktik. En fallstudie gjordes av mjukvaruföretaget SAS Institute (SAS). Datainsamlingen genomfördes via intervjuer samt insamling av dokument och resultaten analyserades kvalitativt. Studien gjorde många intressanta fynd gällande upplevda problem kopplat till transformation av BSD, bl.a. hög risk för partisk data och låg analysmognad, samt flera skillnader mellan teori och praktik. Tidigare forskning gör inte heller skillnad mellan begreppen datakvalitet och informationskvalitet, vilket görs i praktiken. / The growing use of social media generates enormous amounts of online social data, called Big Social Data (BSD). Previous research highlights problems with BSD reliability related to decision making, and that reliability is strongly connected to data quality and information quality. However, there is a lack of research with a focus on practitioners’ perspectives on this matter. To address this gap, this study set out to investigate what is perceived as a problem when transforming BSD into reliable information for decision making in an organisational context, and also how this differs in theory compared with practice. A case study was conducted of the software company SAS Institute (SAS). Data collection was done through interviews and gathering of documents, and results were analysed qualitatively. The study resulted in many interesting findings regarding perceived problems connected to the transformation of BSD, e.g. high risk of biased data and low maturity regarding data analysis, as well as several differences between theory and practice. Furthermore, previous research makes no distinction between the terms data quality and information quality, but this is done in practice.
|
4 |
Transformer les big social data en prévisions - méthodes et technologies : Application à l'analyse de sentiments / Transforming big social data into forecasts - methods and technologiesEl alaoui, Imane 04 July 2018 (has links)
Extraire l'opinion publique en analysant les Big Social data a connu un essor considérable en raison de leur nature interactive, en temps réel. En effet, les données issues des réseaux sociaux sont étroitement liées à la vie personnelle que l’on peut utiliser pour accompagner les grands événements en suivant le comportement des personnes. C’est donc dans ce contexte que nous nous intéressons particulièrement aux méthodes d’analyse du Big data. La problématique qui se pose est que ces données sont tellement volumineuses et hétérogènes qu’elles en deviennent difficiles à gérer avec les outils classiques. Pour faire face aux défis du Big data, de nouveaux outils ont émergés. Cependant, il est souvent difficile de choisir la solution adéquate, car la vaste liste des outils disponibles change continuellement. Pour cela, nous avons fourni une étude comparative actualisée des différents outils utilisés pour extraire l'information stratégique du Big Data et les mapper aux différents besoins de traitement.La contribution principale de la thèse de doctorat est de proposer une approche d’analyse générique pour détecter de façon automatique des tendances d’opinion sur des sujets donnés à partir des réseaux sociaux. En effet, étant donné un très petit ensemble de hashtags annotés manuellement, l’approche proposée transfère l'information du sentiment connue des hashtags à des mots individuels. La ressource lexicale qui en résulte est un lexique de polarité à grande échelle dont l'efficacité est mesurée par rapport à différentes tâches de l’analyse de sentiment. La comparaison de notre méthode avec différents paradigmes dans la littérature confirme l'impact bénéfique de notre méthode dans la conception des systèmes d’analyse de sentiments très précis. En effet, notre modèle est capable d'atteindre une précision globale de 90,21%, dépassant largement les modèles de référence actuels sur l'analyse du sentiment des réseaux sociaux. / Extracting public opinion by analyzing Big Social data has grown substantially due to its interactive nature, in real time. In fact, our actions on social media generate digital traces that are closely related to our personal lives and can be used to accompany major events by analysing peoples' behavior. It is in this context that we are particularly interested in Big Data analysis methods. The volume of these daily-generated traces increases exponentially creating massive loads of information, known as big data. Such important volume of information cannot be stored nor dealt with using the conventional tools, and so new tools have emerged to help us cope with the big data challenges. For this, the aim of the first part of this manuscript is to go through the pros and cons of these tools, compare their respective performances and highlight some of its interrelated applications such as health, marketing and politics. Also, we introduce the general context of big data, Hadoop and its different distributions. We provide a comprehensive overview of big data tools and their related applications.The main contribution of this PHD thesis is to propose a generic analysis approach to automatically detect trends on given topics from big social data. Indeed, given a very small set of manually annotated hashtags, the proposed approach transfers information from hashtags known sentiments (positive or negative) to individual words. The resulting lexical resource is a large-scale lexicon of polarity whose efficiency is measured against different tasks of sentiment analysis. The comparison of our method with different paradigms in literature confirms the impact of our method to design accurate sentiment analysis systems. Indeed, our model reaches an overall accuracy of 90.21%, significantly exceeding the current models on social sentiment analysis.
|
5 |
Data curation for qualitative data reuse and big social research / Connecting communities of practiceMannheimer, Sara 12 September 2022 (has links)
In den letzten Jahren haben Innovationen bei Datenquellen und Methoden für die sozialwissenschaftliche Forschung zugenommen. Diese Forschungsarbeit zielt darauf ab, die Auswirkungen dieser Innovationen auf drei Praxisgemeinschaften besser zu verstehen:
qualitativ Forschende, Big Social Data Forschende und Datenkurator*innen. Folgenden Forschungsfragen werden behandelt. RQ1: Wie unterscheidet sich die Kuratierung von Big Social Data und qualitativen Daten? RQ2: Welche Auswirkungen haben diese Ähnlichkeiten und Unterschiede auf die Kuratierung von Big Social Data und qualitativen Daten und was können wir aus der Kombination dieser beiden Communities lernen? Ich beantwortete diese Fragen durch eine Literaturrecherche, in der ich Gemeinsamkeiten zwischen qualitativer Datennachnutzung und Big Social Data identifizierte. Dann führte ich semi-strukturierte Interviews mit den drei Praxisgemeinschaften durch. Die Analyse identifizierte sechs Schlüsselthemen für die qualitative Datennachnutzung und Big Social Data: Kontext, Datenqualität und Vertrauenswürdigkeit, Datenvergleichbarkeit, informierte Einwilligung, Datenschutz und Vertraulichkeit sowie geistiges Eigentum und Dateneigentum. Ich habe außerdem fünf weitere Themen identifiziert: Domänenunterschiede, Strategien für eine verantwortungsvolle Praxis, Fragen der Datenpflege, Menschen oder Inhalte als Untersuchungsobjekte sowie unterschiedliche Schwerpunkte und Ansätze. Die Verbindung dieser drei Praxisgemeinschaften kann ein breiteres Verständnis der Schlüsselfragen unterstützen und zu verantwortungsbewussteren Forschungspraktiken führen. Datenkurator*innen verfügen über die Fähigkeiten und Perspektiven, um zwischen den Praxisgemeinschaften zu übersetzen und eine verantwortungsvolle qualitative Nachnutzung von Daten und Big Social Data zu unterstützen. / Recent years have seen the rise of innovations in data sources and methods for social science research. This research aims to better understand the impact of these innovations on three communities of practice: qualitative researchers, big social researchers, and data curators. I address the following research questions. RQ1: How is big social data curation similar to and different from qualitative data curation? RQ1a: How are epistemological, ethical, and legal issues different or similar for qualitative data reuse and big social research? RQ1b: How can data curation practices support and resolve some of these epistemological and ethical issues? RQ2: What are the implications of these similarities and differences for big social data curation and qualitative data curation, and what can we learn from combining these two conversations? I answered these questions through a literature review, in which I identified issues in common between qualitative data reuse and big social research. Then I conducted semi-structured interviews with the three communities of practice. The research identified six key issues for qualitative data reuse and big social research: context, data quality and trustworthiness, data comparability, informed consent, privacy and confidentiality, and intellectual property and data ownership. I also identified five additional themes: domain differences, strategies for responsible practice, data curation issues, human subjects vs. content, and different focuses and approaches. Connecting these three communities of practice can support a broader understanding of the key issues and lead to more responsible research practices. Data curators have the skills and perspectives to translate between communities of practice and provide guidance for responsible qualitative data reuse and big social data.
|
6 |
Big Social Data Analytics: A Model for the Public SectorBin Saip, Mohamed A. January 2019 (has links)
The influence of Information and Communication Technologies (ICTs)
particularly internet technology has had a fundamental impact on the
way government is administered, provides services and interacts with citizens.
Currently, the use of social media is no longer limited to informal environments
but is an increasingly important medium of communication between citizens and
governments. The extensive and increasing use of social media will continue to
generate huge amounts of user-generated content known as Big Social Data
(BSD). The growing body of BSD presents innumerable opportunities as well as
challenges for local government planning, management and delivery of public
services to citizens. However, the governments have not yet utilised the
potential of BSD for better understanding the public and gaining new insights
from this new way of interactions. Some of the reasons are lacking in the
mechanism and guidance to analyse this new format of data. Thus, the aim of
this study is to evaluate how the body of BSD can be mined, analysed and
applied in the context of local government in the UK. The objective is to develop
a Big Social Data Analytics (BSDA) model that can be applied in the case of local
government. Data generated from social media over a year were collected,
collated and analysed using a range of social media analytics and network
analysis tools and techniques. The final BSDA model was applied to a local
council case to evaluate its impact in real practice. This study allows to better
understand the methods of analysing the BSD in the public sector and extend
the literature related to e-government, social media, and social network theory / Universiti Utara Malaysia
|
7 |
On the Design of Socially-Aware Distributed SystemsKourtellis, Nicolas 01 January 2012 (has links)
Social media services and applications enable billions of users to share an unprecedented amount of social information, which is further augmented by location and collocation information from mobile phones, and can be aggregated to provide an accurate digital representation of the social world. This dissertation argues that extracted social knowledge from this wealth of information can be embedded in the design of novel distributed, socially-aware applications and services, consequently improving system response time, availability and resilience to attacks, and reducing system overhead. To support this thesis, two research avenues are explored.
First, this dissertation presents Prometheus, a socially-aware peer-to-peer service that collects social information from multiple sources, maintains it in a decentralized fashion on user-contributed nodes, and exposes it to applications through an interface that implements non-trivial social inferences. The system's socially-aware design leads to multiple system improvements: 1) it increases service availability by allowing users to manage their social information via socially-trusted peers, 2) it improves social inference performance and reduces message overhead by exploiting naturally-formed social groups, and 3) it reduces the opportunity of attackers to influence application requests. These performance improvements are assessed via simulations and a prototype deployment on a local cluster and on a worldwide testbed (PlanetLab) under emulated application workloads.
Second, this dissertation defines the projection graph, the result of decentralizing a social graph onto a peer-to-peer system such as Prometheus, and studies the system's network properties and how they can be used to design more efficient socially-aware distributed applications and services. In particular: 1) it analytically formulates the relation between centrality metrics such as degree centrality, node betweenness centrality, and edge betweenness centrality in the social graph and in the emerging projection graph, 2) it experimentally demonstrates on real networks that for small groups of users mapped on peers, there is high association of social and projection graph properties, 3) it shows how these properties of the (dynamic) projection graph can be accurately inferred from the properties of the (slower changing) social graph, and 4) it demonstrates with two search application scenarios the usability of the projection graph in designing social search applications and unstructured P2P overlays.
These research results lead to the formulation of lessons applicable to the design of socially-aware applications and distributed systems for improved application performance such as social search, data dissemination, data placement and caching, as well as for reduced system communication overhead and increased system resilience to attacks.
|
8 |
Arabs and Muslims in Disney Animated Films: A Mixed Methods Approach to Understand Film Content and IMDb ReviewsElhersh, Ghanem Ayed 23 May 2022 (has links)
No description available.
|
9 |
Fusion of Soft and Hard Data for Event Prediction and State EstimationThirumalaisamy, Abirami 11 1900 (has links)
Social networking sites such as Twitter, Facebook and Flickr play an important role
in disseminating breaking news about natural disasters, terrorist attacks and other
events. They serve as sources of first-hand information to deliver instantaneous news
to the masses, since millions of users visit these sites to post and read news items regularly.
Hence, by exploring e fficient mathematical techniques like Dempster-Shafer
theory and Modi ed Dempster's rule of combination, we can process large amounts of
data from these sites to extract useful information in a timely manner. In surveillance
related applications, the objective of processing voluminous social network data is to
predict events like revolutions and terrorist attacks before they unfold. By fusing the
soft and often unreliable data from these sites with hard and more reliable data from
sensors like radar and the Automatic Identi cation System (AIS), we can improve
our event prediction capability. In this paper, we present a class of algorithms to
fuse hard sensor data with soft social network data (tweets) in an e ffective manner.
Preliminary results using are also presented. / Thesis / Master of Applied Science (MASc)
|
10 |
A time and place for everything? : social visualisation tools and critical literaciesJohansson, Veronica January 2012 (has links)
The aim of this study is to analyse mutual enactments of critical literacies and social visualisation tools as information resources. The central concept of critical literacies as used here extends and redefines prior critical literacy definitions to denote the pluralistic situated enactments of meaning through which study participants identify, question and transform bias, restrictions and power related aspects of access, control and use in relation to the tools. The study is based on two critical ethnography inspired case studies involving observations, interviews, and contextual inquiry and located in professional settings. Case 1 is centred on how a geographic information system (MapInfo) is used for analysing and preventing traffic accidents. Case 2 is centred on how a dynamic time series animating chart (Trendalyzer) is used for analysing and spreading knowledge about the world’s development. The results demonstrate co-existing critical literacies described in terms of three main directionalities as reactive, proactive, and adaptive, of which the adaptive varieties seem thus far largely overlooked. On the basis of these findings, it is suggested that dominant cognitivist and positivist narratives of visualisations should be replaced with more nuanced alternatives that emphasise the potentials of visualisation tools as evocative and non-blackboxed information resources; i.e., as encouraging new questions and allowing alternative analyses, rather than constructing them as enunciative tools providing true answers. As theoretical contributions, the dissertation argues for a conceptualisation of visualisation tools as representational artefacts and a species of documents actuating information organisation related problems of representation. It also presents a new theoretical construct for the analysis and understanding of the mutual shaping of critical literacies and information resources that includes both cultural practices and actor interests through a combination of sociocultural theories on tools and sociotechnical theories on inscriptions. / <p>Academic dissertation for the Degree of Doctor of Philosophy in Library and</p><p>Information Science at the University of Borås to be publicly defended on Friday</p><p>14 December 2012 at 13.00 in lecture room C203, the University of Borås,</p><p>Allégatan 1, Borås.</p>
|
Page generated in 0.0459 seconds