• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 9
  • 8
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 17
  • 16
  • 13
  • 13
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Individual variation and hormonal modulation of sodium channel alpha and beta1 subunits in the electric organ correlate with variation in a social signal

Liu, He 28 August 2008 (has links)
Not available / text
22

A comparative study of the individual and combined electrophysiological effects of mutations in the cardiac sodium channel and ryanodine receptor

Zhang, Yanhui January 2011 (has links)
No description available.
23

The Role of the Defective Nav1.4 Channels in the Mechanism of Hyperkalemic Periodic Paralysis

Lucas, Brooke 12 January 2012 (has links)
Hyperkalemic periodic paralysis (HyperKPP) is an autosomal dominant human skeletal muscle channelopathy that causes periods of myotonic discharge and periodic paralysis due to defective Nav1.4 sodium channels. Patients are asymptomatic at birth, attacks become short and frequent during childhood, and more severe during adolescence. Since the Nav1.4 content in the cell membrane is relatively constant during childhood, it was hypothesized that some symptoms start with the defective Nav1.4 channels, while other symptoms start after some changes occur in gene expression affecting other membrane channel content and/or activity. To test the hypothesis, the contractile characteristics of EDL and soleus muscles from HyperKPP mice from the age of 0.5 to 12 months were tested in vitro. For both EDL and soleus, contractile defects, including low force generation, instability and large unstimulated force were observed by two weeks of age. With aging, the defects did not worsen, but muscles actually showed some improvement. Considering that Nav1.4 protein content reaches maximum at three weeks of age, the data suggests that HyperKPP symptoms are solely due to the defective Nav1.4 channels.
24

Herpes virus-based packaging systems for gene delivery of the RIIA sodium channel

Sadl, Virginia. January 1996 (has links)
To investigate the localization and targeting of sodium channels in neurons, an efficient means of gene delivery will need to be established. Two amplicon-based viral approaches and a recombinant whole virus approach were attempted in order to package and express RIIA sodium channel tagged with a c-myc epitope (RIIA-myc) with the ultimate purpose of developing a Herpes virus-based model system for targeting studies. / Immunofluorescent staining of transfected epithelial cells was carried out to demonstrate that constructs created for use in these HSV-based approaches were capable of a high level of expression of RIIA-myc. Measurements of $ beta$-galactosidase reporter gene expression observed in cultured cells infected with RIIA amplicon virus suggested successful packaging of amplicon DNA. However, RIIA-myc expression from amplicon virus was not apparent, which may suggest recombination events occurred upon packaging of constructs. Difficulties in selection for recombinants with acyclovir prevented the recombinant whole virus approach from being pursued.
25

Regulation of the epithelial sodium channel (ENac) by ubiquitination

Wiemuth, Dominik, n/a January 2006 (has links)
The epithelial sodium channel (ENaC) is the central component of the sodium absorption pathway in epithelia. It is critical for sodium homeostasis and blood pressure control, which is demonstrated by rare genetic disorders such as Liddle�s syndrome and pseudohypoaldosteronism type I, that are associated with hyper- and hypotension, respectively. ENaC is mainly regulated by mechanisms that control the expression of active channels at the cell surface. Ubiquitin ligases of the Nedd4-like family, such as Nedd4 and Nedd4-2 decrease epithelial sodium absorption by binding to and targeting ENaC for endocytosis and degradation. This is most likely achieved by catalyzing the ubiquitination of ENaC. Conversely the serum- and glucocorticoid regulated kinase (SGK) increases ENaC activity. This effect is partly mediated by the interaction of SGK with the ubiquitin ligases Nedd4 and Nedd4-2. SGK is able to bind to both Nedd4 and Nedd4-2, however only Nedd4-2 is phosphorylated by SGK. The phosphorylation of Nedd4-2 inhibits its interaction with ENaC, thus reducing ENaC ubiquitination, thereby increasing surface expression and sodium absorption. Nedd4-like proteins interact with ENaC via their WW-domains. These domains bind PY-motifs (PPXY) present in ENaC subunits. Nedd4 and Nedd4-2 both have four highly similar WW-domains. Previous studies have shown that interaction between Nedd4 and ENaC is mainly mediated by WW-domain 3. SGK also has a PY-motif; therefore it was analyzed whether the WW-domains of Nedd4 and Nedd4-2 mediate binding to SGK. Here, it is shown that single or tandem WW-domains of Nedd4 and Nedd4-2 mediate binding to SGK and that, despite their high similarity, different WW-domains of Nedd4 and Nedd4-2 are involved. These data also suggest that WW-domains 2 and 3 of Nedd4-2 mediate the interaction with SGK in a concerted manner, and that in vitro the phosphorylation of SGK at serine residue 422 increases its affinity for the WW-domains of Nedd4-2. The stimulatory effect of SGK on ENaC activity is partly mediated via Nedd4-2 and will decrease if competition between Nedd4 and Nedd4-2 for binding to SGK occurs. Here it is shown that Nedd4 and Nedd4-2 are located in the same subcellular compartment and that they compete for binding to SGK. Besides its function in the proteasomal degradation pathway ubiquitination is involved in the regulation of membrane protein trafficking, including their endocytosis. ENaC was shown previously to be ubiquitinated. Here, we provide evidence that ENaC can be ubiquitinated differentially depending on its cellular location. Channels residing in the plasma membrane are multiubiquitinated and we suggest that this serves as an internalization signal for ENaC and a control for further trafficking. Cytosolic ENaC is mainly polyubiquitinated, and therefore probably targeted for proteasomal degradation. However, mono- and multiubiquitination of ENaC located within the cytosol is very likely to occur as well. In addition, it is shown that both proteasomal and lysosomal pathways are involved in the regulation of ENaC.
26

Individual variation and hormonal modulation of sodium channel alpha and beta1 subunits int he electric organ correlate with variation in a social signal

Liu, He, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
27

The Role of the Defective Nav1.4 Channels in the Mechanism of Hyperkalemic Periodic Paralysis

Lucas, Brooke January 2012 (has links)
Hyperkalemic periodic paralysis (HyperKPP) is an autosomal dominant human skeletal muscle channelopathy that causes periods of myotonic discharge and periodic paralysis due to defective Nav1.4 sodium channels. Patients are asymptomatic at birth, attacks become short and frequent during childhood, and more severe during adolescence. Since the Nav1.4 content in the cell membrane is relatively constant during childhood, it was hypothesized that some symptoms start with the defective Nav1.4 channels, while other symptoms start after some changes occur in gene expression affecting other membrane channel content and/or activity. To test the hypothesis, the contractile characteristics of EDL and soleus muscles from HyperKPP mice from the age of 0.5 to 12 months were tested in vitro. For both EDL and soleus, contractile defects, including low force generation, instability and large unstimulated force were observed by two weeks of age. With aging, the defects did not worsen, but muscles actually showed some improvement. Considering that Nav1.4 protein content reaches maximum at three weeks of age, the data suggests that HyperKPP symptoms are solely due to the defective Nav1.4 channels.
28

Characterization of hormonal responses in stably transfected A6 cells expressing alpha and beta subunits of the amiloride-sensitive sodium channel and possible mechanisms of channel regulation

Hartman, Amy January 2000 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
29

Herpes virus-based packaging systems for gene delivery of the RIIA sodium channel

Sadl, Virginia. January 1996 (has links)
No description available.
30

Molecular mechanisms of local anaesthetic action on voltage-gated ion channels /

Nilsson, Johanna, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol inst., 2004. / Härtill 4 uppsatser.

Page generated in 0.0602 seconds