• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical investigation of lateral behaviour of a large pile group supporting an LNG tank

Jones, Kimberly 30 August 2021 (has links)
Liquefied natural gas (LNG) storage tanks are often supported by very large pile groups (≥ 100 piles). As these superstructures tend to be located along coastal areas, there is often a high risk of extreme lateral loading caused by either seismic, flooding or hurricane activity. In many cases, the foundation design can be governed by the required lateral resistance. At present, the responses of large pile groups subjected to lateral loading are not well understood. Published guidance for design is premised upon experimental testing of smaller pile groups (< 25 piles), and no additional commentary is provided to advise the design for groups of a larger scale. A typical approach for design of laterally loaded pile groups uses the beam on Winkler foundations method, where nonlinear p-y curves are reduced by a p-multiplier to account for the group effects. Alternatively, an average p-multiplier known as a group reduction factor (GRF) can be used. Chapter 1 details the study of using 3D continuum finite element (FE) models to measure the group effects in large pile groups using p-multipliers and GRF. Soil conditions, pile spacing, pile number, and pile head condition were varied to observe their effects. The study also looked at the effect of the circular configuration of pile groups used in LNG tank foundations. The design standards and prevailing methods were shown to overestimate trailing row p-multipliers for large pile groups, particularly with larger pile spacing. Based on the study data and published data, a predictive equation was proposed for estimating GRF of a laterally loaded large pile group. In addition, geotechnical engineers tend to evaluate the lateral responses of pile groups regardless of the presence of superstructures. It is not known whether this approach is suited for large infrastructure such as LNG storage tanks and their respective foundations. Chapter 2 captures the results from 3D finite element (FE) models used to observe the integrated tank and piled foundation behaviour and evaluate whether the current design approach used in practice is suitable. In addition, changes to soil-foundation stiffness, including varying soil conditions and pile spacing, were made to observe their effects. The results found that the foundation responses in the integrated model varied significantly from models which only considered the foundation. It was also found that the amount of LNG in the tank, soil conditions, and pile spacing also affected the lateral pile responses, particularly the leading and trailing piles. / Graduate
2

Comparative study of different methods for superstructure-foundation interactions

Sharma, Prakriti 04 January 2022 (has links)
Bridge failures in the past decade due to structural deficiencies demonstrated the clear need for a review of the current bridge analysis approaches. This study focuses on pile-supported bridges under predominantly static loading. A critical review of the current analysis approaches was performed. It was concluded that in the absence of an onerous iteration process, the current approaches often produce inaccurate and, in many cases, unsafe results since the interactions between superstructure and foundation are not fully considered. To address the inherent limitations of the current approaches, a computer program [Soil Spring Module (SSM) 2.0] was developed as a part of the study. SSM 2.0 can be used in conjunction with a frame analysis program to capture nonlinear load transfer from foundation elements to soil in different directions simultaneously. STAAD.Pro was selected for demonstration in this study. Using SSM 2.0 and STAAD.Pro, this study proposes a new analysis approach using the Integrated Analysis Process (IAP). The same methodology can be applied in other frame analysis programs. Kansas Bridge 45 was selected as a case study. Using the IAP approach, a series of integrated analyses including all superstructure elements (e.g., deck, girders and piers) and all foundation elements (e.g., pile caps and piles) were performed on Kansas Bridge 45 for different soil types and properties. Different from the conventional approaches, the full interactions between superstructure and foundation were considered simultaneously in a single analysis using the IAP approach. The analysis results from the IAP approach and the conventional approaches were examined. The advantages of the IAP approach were identified. Comparing to the conventional approaches in current practice, the proposed IAP approach does not involve crude assumptions or intensive iterations. Using the IAP approach, design engineers can complete structural and foundation analysis of pile-supported bridges with good accuracy in a timely manner. The same methodology can potentially be applied to other structure types. / Graduate / 2022-12-15

Page generated in 0.1088 seconds