• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Resistance of Pile Caps to Lateral Loading

Mokwa, Robert L. 02 October 1999 (has links)
Bridges and buildings are often supported on deep foundations. These foundations consist of groups of piles coupled together by concrete pile caps. These pile caps, which are often massive and deeply buried, would be expected to provide significant resistance to lateral loads. However, practical procedures for computing the resistance of pile caps to lateral loads have not been developed, and, for this reason, cap resistance is usually ignored. Neglecting cap resistance results in estimates of pile group deflections and bending moments under load that may exceed the actual deflections and bending moments by 100 % or more. Advances could be realized in the design of economical pile-supported foundations, and their behavior more accurately predicted, if the cap resistance can be accurately assessed. This research provides a means of assessing and quantifying many important aspects of pile group and pile cap behavior under lateral loads. The program of work performed in this study includes developing a full-scale field test facility, conducting approximately 30 lateral load tests on pile groups and pile caps, performing laboratory geotechnical tests on natural soils obtained from the site and on imported backfill materials, and performing analytical studies. A detailed literature review was also conducted to assess the current state of practice in the area of laterally loaded pile groups. A method called the "group-equivalent pile" approach (abbreviated GEP) was developed for creating analytical models of pile groups and pile caps that are compatible with established approaches for analyzing single laterally loaded piles. A method for calculating pile cap resistance-deflection curves (p-y curves) was developed during this study, and has been programmed in the spreadsheet called PYCAP. A practical, rational, and systematic procedure was developed for assessing and quantifying the lateral resistance that pile caps provide to pile groups. Comparisons between measured and calculated load-deflection responses indicate that the analytical approach developed in this study is conservative, reasonably accurate, and suitable for use in design. The results of this research are expected to improve the current state of knowledge and practice regarding pile group and pile cap behavior. / Ph. D.
2

[en] INSTRUMENTED LOAD TEST CARRIED OUT IN A PILED QUAY STRUCTURE / [pt] PROVA DE CARGA INSTRUMENTADA EM UM CAIS APOIADO SOBRE ESTACAS

ERIC ARTHUR DE FREITAS PENEDO 04 September 2018 (has links)
[pt] Esta dissertação apresenta os dados de um teste de carga instrumentado em um cais, enfatizando a importância da instrumentação de campo para melhor compreender o comportamento da estrutura durante o teste. Dentro desta abordagem, foi realizada uma revisão sobre o comportamento de grupo de estacas, direcionada à influência do espaçamento entre estacas na interação entre as mesmas, e da rigidez do bloco na distribuição de carga entre as estacas, no fator de segurança das mesmas e das distorções angulares do bloco. Em seguida, foram descritas as características geométricas e geotécnicas do cais testado, e foram apresentadas as características da instrumentação utilizada, composta por extensômetros elétricos, eletroníveis e nível topográfico, desde sua montagem e calibração, até a sua instalação em campo. Foi destacada a utilização dos eletroníveis, que apesar de pouco utilizados na prática da engenharia geotécnica, são instrumentos versáteis, precisos e podem ser reutilizados. O procedimento do teste de carga foi realizado de modo a simular a situação real da maneira mais próxima da realidade, onde foram monitoradas as deformações em quatro estacas, a rotação e o recalque da laje do cais. A estrutura apresentou bom desempenho durante o teste, com baixo nível de deformação nas estacas, distorção angular desprezível e baixos valores de recalque total e residual. / [en] This dissertation presents the data of an instrumented load test in a wharf, emphasizing the importance of field instrumentation to analyze the behavior of the structure during the load test. First, a review was carried out on the behavior of pile groups, focusing on the influence of pile spacing in the interaction factors. It also considered the influence of the raft stiffness on the load distribution and factor of safety of the piles. The main characteristics of the wharf were presented, such as, geometry, dimensions, deformability and strength properties of the concrete. The geological and geotechnical subsoil profile have been presented, indicating a soft clay layer resting on a very compact residual soil. The particularities of the instrumentation used on the test, composed by strain gauges, electrolevels and a topographic level, were presented since the assembly and calibration, to the installation on field. Despite its underutilization in geotechnical engineering practice, the use of electrolevels was emphasized, due to its versatility, accuracy and the fact that they can be reutilized. The load test procedure was made to simulate the real situation as close as possible, where strain in four piles, rotation and settlement of the deck were monitored. The structure performanced well during the test, presenting low level of strain in piles, negligible angular distortion of the deck and low values of total and residual settlements.
3

Sanace sesuvu silničního tělesa / Stabilization of landslide on road embankment

Kořínková, Jana January 2018 (has links)
The topic of this Master`s thesis is to design stabilization of road embankment, which is between Brno-Chrlice and Brno-Holásky. Aim of this thesis is finding acceptable solution of problem including finding cause of fault and describing other possible options. Solution will be design in GEO5. Thesis is completed with procedure in pile installation and drawing documentation.
4

Numerical investigation of lateral behaviour of a large pile group supporting an LNG tank

Jones, Kimberly 30 August 2021 (has links)
Liquefied natural gas (LNG) storage tanks are often supported by very large pile groups (≥ 100 piles). As these superstructures tend to be located along coastal areas, there is often a high risk of extreme lateral loading caused by either seismic, flooding or hurricane activity. In many cases, the foundation design can be governed by the required lateral resistance. At present, the responses of large pile groups subjected to lateral loading are not well understood. Published guidance for design is premised upon experimental testing of smaller pile groups (< 25 piles), and no additional commentary is provided to advise the design for groups of a larger scale. A typical approach for design of laterally loaded pile groups uses the beam on Winkler foundations method, where nonlinear p-y curves are reduced by a p-multiplier to account for the group effects. Alternatively, an average p-multiplier known as a group reduction factor (GRF) can be used. Chapter 1 details the study of using 3D continuum finite element (FE) models to measure the group effects in large pile groups using p-multipliers and GRF. Soil conditions, pile spacing, pile number, and pile head condition were varied to observe their effects. The study also looked at the effect of the circular configuration of pile groups used in LNG tank foundations. The design standards and prevailing methods were shown to overestimate trailing row p-multipliers for large pile groups, particularly with larger pile spacing. Based on the study data and published data, a predictive equation was proposed for estimating GRF of a laterally loaded large pile group. In addition, geotechnical engineers tend to evaluate the lateral responses of pile groups regardless of the presence of superstructures. It is not known whether this approach is suited for large infrastructure such as LNG storage tanks and their respective foundations. Chapter 2 captures the results from 3D finite element (FE) models used to observe the integrated tank and piled foundation behaviour and evaluate whether the current design approach used in practice is suitable. In addition, changes to soil-foundation stiffness, including varying soil conditions and pile spacing, were made to observe their effects. The results found that the foundation responses in the integrated model varied significantly from models which only considered the foundation. It was also found that the amount of LNG in the tank, soil conditions, and pile spacing also affected the lateral pile responses, particularly the leading and trailing piles. / Graduate
5

Full-Scale Lateral Load Test of a 3x5 Pile Group in Sand

Walsh, James Matthew 15 July 2005 (has links) (PDF)
Although it is well established that spacing of piles within a pile group influences the lateral load resistance of that group, additional research is needed to better understand trends for large pile groups (greater than three rows) and for groups in sand. A 15-pile group in a 3x5 configuration situated in sand was laterally loaded and data were collected to derive p-multipliers. A single pile separate from the 15-pile group was loaded for comparison. Results were compared to those of a similar test in clays. The load resisted by the single pile was greater than the average load resisted by each pile in the pile group. While the loads resisted by the first row of piles (i.e. the only row deflected away from all other rows of piles) were approximately equal to that resisted by the single pile, following rows resisted increasingly less load up through the fourth row. The fifth row consistently resisted more than the fourth row. The pile group in sand resisted much higher loads than did the pile group in clay. Maximum bending moments appeared largest in first row piles. For all deflection levels, first row moments seemed slightly smaller than those measured in the single pile. Maximum bending moments for the second through fifth rows appeared consistently lower than those of the first row at the same deflection. First row moments achieved in the group in sand appeared larger than those achieved in the group in clay at the same deflections, while bending moments normalized by associated loads appeared nearly equal regardless of soil type. Group effects became more influential at higher deflections, manifest by lower stiffness per pile. The single pile test was modeled using LPILE Plus, version 4.0. Soil parameters in LPILE were adjusted until a good match between measured and computed responses was obtained. This refined soil profile was then used to model the 15-pile group in GROUP, version 4.0. User-defined p-multipliers were selected to match GROUP calculated results with actual measured results. For the first loading cycle, p-multipliers were found to be 1.0, 0.5, 0.35, 0.3, and 0.4 for the first through fifth rows, respectively. For the tenth loading, p-multipliers were found to be 1.0, 0.6, 0.4, 0.37, and 0.4 for the first through fifth rows, respectively. Design curves suggested by Rollins et al. (2005) appear appropriate for Rows 1 and 2 while curves specified by AASHTO (2000) appear appropriate for subsequent rows.
6

Effectiveness of Compacted Fill and Rammed Aggregate Piers for Increasing Lateral Resistance of Pile Foundations

Lemme, Nathan A. 09 November 2010 (has links) (PDF)
Compacted fill and rammed aggregate piers (RAPs) were separately installed adjacent to a 9-ft by 9-ft by 2.5-ft driven pile foundation founded in soft clay. The compacted fill used to laterally reinforce an area of 11 ft by 5 ft by 6 ft deep adjacent to the pile cap was clean concrete sand. The thirty-inch diameter RAPs were installed in three staggered rows to a depth of 12.5 ft below the ground surface adjacent to the pile cap to test the increase in lateral resistance afforded by their installation. The foundation was laterally loaded and load, displacement, and strain readings were recorded. The results of this testing were compared with similar tests performed with virgin soil conditions. The total lateral capacity of the pile foundation increased by 5 percent or14 kips due to compacted fill placement against the face of the pile cap. The passive force acting only on the pile cap decreased from 54 kips in the virgin case to 30 kips after installation of the compacted fill, a decrease of about 45 percent. The total lateral capacity of the pile foundation that was retrofit with RAPs was increased by 18 percent or 52 kips as compared to an identical pile cap in virgin clay. The passive force acting on the pile cap at 1.5 inches of pile cap displacement was determined to be approximately 50 kips, showing a slight decrease in passive resistance as compared to the tests performed on virgin soil. Both reinforcement techniques reduced pile head rotation and the bending moments in the shallow portions of the piles.
7

Soil-Structure Interaction of Pile Groups for High-Speed Railway Bridges

Strand, Tommy, Severin, Johannes January 2018 (has links)
No description available.
8

Soil-Pile, Pile Group Foundations and Pipeline Systems Interaction Behavior Extending Saturated and Unsaturated Soil Mechanics

Al-Khazaali, Mohammed 25 February 2019 (has links)
Rapid growth in population along with positive trends in global economy over the past several decades has significantly contributed to an increased demand for various infrastructure needs worldwide. For this reason, the focus of this thesis has been directed towards extending the mechanics of unsaturated soils, which is an emerging geotechnical engineering field to investigate the behavior of two key infrastructure systems, namely pile foundations and energy pipeline systems. The mechanism of soil-pile foundations and soil-pipeline systems interaction behavior has several similarities. Both these infrastructure facilities require comprehensive understanding of the soil-structure interaction mechanism. Reliable estimation of mechanical properties of both the soil and the soil-structure interface is required for the rational interpretation the load-displacement behavior of pile foundations and pipeline systems. Currently, the design of systems is predominantly based on design codes and guidelines that use empirical procedures or employ the principles of saturated soil mechanics. In many scenarios, pile foundations extend either totally or partly in unsaturated soils as the groundwater table level in many regions is at a greater depth. Such scenarios are commonly encountered in semi-arid and arid regions of the world. In addition, pipeline systems are typically buried at shallow depths in unsaturated soil strata, which are susceptible to wetting and drying, freezing and thawing cycles or both, due to seasonal environmental changes. Capillary stress or matric suction in the unsaturated zone increases the effective stress contribution towards the shear strength and stiffness of soil and soil-structure interface. Extending saturated soil mechanics to design or analyze such structures may lead to erroneous estimation of pile foundation carrying capacity or loads transferred on pipeline body from the surrounding unsaturated soil. Experimental, analytical and numerical investigations were undertaken to study the behavior of single pile, pile group, and pipeline systems in saturated and unsaturated sands under static loading. The experimental program includes 40 single model pile and 2×2 pile group, and six prototype pipeline tests under saturated and unsaturated condition. The results of the experimental studies suggest that matric suction has significant contribution towards the mechanical behavior of both pile foundation and pipeline system. The axial load carrying capacity of single pile and pile group increased approximately 2 to 2.5 times and the settlement reduced significantly compared to saturated condition. The influence of matric suction towards a single pile is significantly different in comparison to pile group behavior. The cumulative influence of matric suction and stress overlap of pile group behavior in sandy soils result in erroneous estimation of pile group capacity, if principles of saturated soil mechanics are extended. Group action plays major role in changing the moisture regime under the pile group leading to incompatible stress state condition in comparison to single pile behavior. On the other hand, the peak axial load on the pipe is almost 2.5 folds greater in unsaturated sand that undergoes much less displacement in comparison to saturated condition. Such an increase in the external axial forces may jeopardize the integrity of energy pipeline systems and requires careful reevaluation of existing design models extending the principles of unsaturated soil mechanics. Two analytical design models to estimate the axial force exerted on pipeline body were proposed. The proposed models take account of matric suction effect and soil dilatancy and provide smooth transition from unsaturated to saturated condition. These models were developed since measurement of the unsaturated soil and interface shear strength and stiffness properties need extensive equipment that require services of trained professional, which are expensive and time consuming. The models utilize the saturated soil shear strength parameters and soil-water characteristic curve (SWCC) to predict the mechanical behavior of the structure in saturated and unsaturated cohesionless soils. The prototype pipeline experimental results were used to verify the proposed models. The predicted axial force on pipeline using the proposed models agrees well with the measured behavior under both saturated and unsaturated conditions. Moreover, numerical techniques were proposed to investigate the behavior of pile foundation and pipeline system in saturated and unsaturated sand. The proposed methodology can be used with different commercially available software programs. Two finite element analysis programs were used in this study; namely, PLAXIS 2D (2012) to simulate soil-pile foundation behavior and SIGMA/W (2012) to simulate soil-pipeline system behavior. The proposed techniques require the information of unsaturated shear strength and stiffness, which can be derived from saturated soil properties and the SWCC. The model was verified using pile and pipeline test results from this study and other research studies from the published literature. There is a good agreement between the measured behavior and the predicted behavior for both the saturated and unsaturated conditions. The methodology was further extended to investigate the behavior of rigid and flexible pipelines buried in Indian Head till (IHT) during nearby soil excavation activity. The simulation results suggest that excavation can be extended safely without excessive deformation to several meters without the need for supporting system under unsaturated condition. The studies summarized in the thesis provide evidence that the principles of saturated soil mechanics underestimate the pile foundations carrying capacity as well as the axial force exerted on pipelines in unsaturated soils. Such approaches lead to both uneconomical pile foundation and unsafe pipeline systems designs. For this reason, the pile and pile group carrying capacity and pipeline axial force should be estimated taking into account the influence of matric suction as well as the dilatancy of the compacted sand. The experimental studies, testing techniques along with the analyses of test results and the proposed analytical and numerical models are useful for better understanding the pile foundation and buried pipeline behaviors under both saturated and unsaturated conditions. The proposed analytical and finite element models are promising for applying the mechanics of unsaturated soils into conventional geotechnical engineering practice using simple methods.
9

Static and seismic responses of pile-supported marine structures under scoured conditions

Jiang, Wenyu 30 November 2021 (has links)
Scour is a process of removing soils around foundations by currents and waves. For the pile-supported marine structures such as the monopile-supported offshore wind turbines (OWTs) and the pile-supported bridges, scour can decrease the pile capacities and alter the dynamic responses of the structures. At present, there is not a widely accepted method to estimate pile axial or lateral capacity under scoured conditions. For example, different recommendations are used among the existing design standards for estimation of the vertical effective stress and the resulting capacities for single piles under different scour conditions. None of the existing standards or design practice has even considered the scour effects on the behavior of pile groups. Furthermore, the investigation into the responses of piles under multiple hazards of scour and earthquakes is rarely reported. To address the foregoing limitations, this study first introduces an analytical solution to determining the vertical effective stress of soils around single isolated piles under scoured conditions and uses it to examine the limitations of the existing standards in estimation of pile tensile capacity (Chapter 1). The effect of soil-pile interface friction is highlighted. Next, the study proposes new approaches to investigating the combined effects of scour and earthquakes on the lateral responses of the monopile-supported OWTs in sand (Chapter 2) and soft clay (Chapter 3). Lastly, simple and practical methods are developed based on the p-y curve framework for analyzing the lateral responses of pile groups in sand (Chapter 4) and soft clay (Chapter 5) subjected to static lateral loading. The proposed methods in this study were encoded into a series of open-source computer scripts for engineering practice. They were verified with the 3D continuum finite element (FE) analyses. Using the proposed methods, standard methods, and 3D FE method, parametric analyses were conducted to investigate the scour effects on the lateral behavior of the monopile-supported OWTs under crustal earthquakes and that of the pile groups under static loading. The factors considered in the parametric study included effects of scour-hole dimensions, soil stress history, soil density, soil-pile interface behavior, soil liquefaction potential, pile group configurations, etc. Through the parametric analyses, the standard methods were critically assessed by comparing the results to those calculated by the proposed methods and 3D FE methods, and some design-related issues were also discussed. / Graduate
10

Optimization of Pile Groups : A practical study using Genetic Algorithm and Direct Search with four different objective functions

Bengtlars, Ann, Väljamets, Erik January 2014 (has links)
Piling is expensive but often necessary when building large structures, for example bridges. Some pile types, such as steel core piles, are very costly and it is therefore of great interest to keep the number piles in a pile group to a minimum. This thesis deals with optimization of pile groups with respect to placement, batter and angle of rotation in order to minimize the number of piles. A program has been developed, where two optimization algorithms named Genetic Algorithm and Direct Search, and four objective functions have been used. These have been tested and compared to find the most suitable for pile group optimization. Three real cases, two bridge supports and one culvert, have been studied, using the program.  It has been difficult to draw any clear conclusions since the results have been ambiguous. This is probably because only three cases have been tested and the results are very problemdependent.The outcome depends, for example, on the starting guess and settings for the optimization. However, the results show that the Genetic Algorithm is somewhat more robust in its ability to remove piles than Direct Search and is therefore to prefer in pile group optimization.

Page generated in 0.0708 seconds