Spelling suggestions: "subject:"operointi"" "subject:"sokereiksi""
1 |
Mechanocatalytic pretreatment of lignocellulosic barley straw to reducing sugarsSchneider, L. (Laura) 29 September 2017 (has links)
Abstract
Biomass conversion methods represent bioeconomic solutions for the sustainable production of value added commodities (chemicals and materials) as well as for energy purposes, either in solid (pellets), liquid (transport fuels) or gaseous (combustion gases e.g. biomethane) form. Lignocellulosic biomass as a renewable source available in immense quantity, is considered to be one of the most promising natural sources, with high potential in the replacement of conventional transportation fuels and reduction of greenhouse gas emissions.
This thesis provides new insights into mechanocatalysis, which as yet is a novel technique in catalytic biomass conversion. The mechanocatalytic approach combines chemical catalysis and mechanical assisted processing driven by ball milling. Lignocellulosic barley straw was impregnated or merely mixed with the catalyst (formic acid, acetic acid, sulfuric acid, oxalic acid dihydrate and potassium pyrosulfate) and ball milled under various conditions yielding the selective depolymerization of lignocellulose into water-soluble xylo-oligosaccharides. Subsequent hydrolysis at moderate temperatures resulted in the formation of valuable reducing sugars, mainly xylose, galactose, arabinose and glucose, which constitute the basic materials for transportation fuel and chemical production.
Reducing sugar release of 53.4 wt% with low by-product formation was observed within short milling durations using sulfuric acid as a catalyst in mechanocatalysis. Likewise, oxalic acid dihydrate and potassium pyrosulfate as a novel catalyst, successfully converted barley straw to reducing sugars (42.4 wt% and 39.7 wt%, respectively), however longer milling durations were required. In comparison, lower saccharification (<10 wt%) was obtained by employing formic acid and acetic acid in mechanocatalysis.
Harsh milling conditions initiated a temperature increase within the reaction vessel resulting in enhanced sugar release. Likewise, greater sugar release was observed with increased catalyst amount and acidity. The results revealed that the balance of these factors is crucial for efficient catalytic conversion of barley straw. / Tiivistelmä
Biomassan konvertointimenetelmät mahdollistavat biotalouden hengen mukaisesti uusia ratkaisuja kemikaalien ja materiaalien kestävään tuotantoon sekä biomassan energiakäyttöön eri muodoissa (kuten pelletit, biopolttoaineet ja biokaasu). Lignoselluloosapohjaista, uusiutuvaa biomassaa, kuten tässä työssä tutkittua ohran olkea, on runsaasti saatavilla. Lignoselluloosa onkin yksi lupaavimmista raaka-aineista korvaamaan fossiilisia polttoaineita ja vähentämään kasvihuonekaasupäästöjä.
Väitöskirjatutkimus antaa uutta tietoa ohran oljen mekaanis–katalyyttisestä käsittelystä, mikä on suhteellisen uusi menetelmä biomassan katalyyttisessä muokkauksessa. Menetelmässä yhdistetään kemiallinen katalyysi ja mekaaninen muokkaus (jauhatus) kuulamyllyllä. Lignoselluloosa (ohran olki) impregnoitiin tai sekoitettiin tutkitun katalyytin (muurahaishappo, etikkahappo, rikkihappo, oksaalihappodihydraatti, kaliumpyrosulfaatti) kanssa ja käsiteltiin erilaisissa mekaanis–katalyyttisissä olosuhteissa. Lignoselluloosan selektiivinen depolymerointi muodosti vesiliukoisia oligosakkarideja ja edelleen hydrolyysin kautta pelkistyneitä sokereita (pääasiassa ksyloosia, galaktoosia, arabinoosia ja glukoosia), joita voidaan käyttää biopolttoaineiden ja -kemikaalien valmistuksessa.
Tutkimuksen tulosten perusteella rikkihappokatalyytillä saatiin 53,4 massa-% ohran oljen sisältämistä pelkistyneistä sokereista vapautettua lyhyillä käsittelyajoilla. Lisäksi sivutuotteiden muodostuminen oli vähäistä. Vastaavasti oksaalihappodihydraatti (sokerisaanto 42,4 massa-%) ja kaliumpyrosulfaatti (sokerisaanto 39,7 massa-%) toimivat uusina katalyytteinä hyvin, mutta vaativat rikkihappokatalyyttiä pidemmät jauhatusajat. Sen sijaan muurahaishapolla ja etikkahapolla sokerisaanto oli erittäin alhainen (alle 10 massa-%) mekaanis–katalyyttisessä käsittelyssä.
Tutkimuksessa todettiin, että voimakas jauhatus vaikutti selkeästi reaktiolämpötilan nousuun käsittelyn aikana, mikä edisti korkeampaa sokerisaantoa. Vastaavasti sokerisaantoa voitiin parantaa katalyyttimäärällä ja happamuudella. Tulokset osoittavat, että näiden muuttujien tasapaino on ratkaisevaa ohran oljen tehokkaan katalyyttisen muuntamisen kannalta.
|
2 |
Bifunctionalised pretreatment of lignocellulosic biomass into reducing sugars:use of ionic liquids and acid-catalysed mechanical approachDong, Y. (Yue) 27 October 2017 (has links)
Abstract
Lignocellulosic biomass is the most abundant renewable raw material on the earth and it is so far the most suitable and promising resource for the production of biofuels to replace long-term use of fossil oil. This research aims to convert lignocellulose-based industrial residuals, fibre sludge (FS) from a pulp mill and pine sawdust (PSD) from a sawmill, into platform sugars by two different bifunctionalised pretreatments of lignocellulosic biomass. The bifunctionalised pretreatment combines the ordinary pretreatment (deconstruction) of lignocellulosic biomass with lignocellulosic polysaccharides saccharification. The outcome from both pretreatments can be further transformed into biofuels and chemicals.
PSD and FS were converted into platform sugars by acid-catalysed mechanical depolymerisation in a planetary ball mill in the first part of this research. The efficiency of the conversion was mainly affected by the transferred energy caused by collisions, the total milling time, acid concentration and moisture content in the reaction. Approximately 30 wt% of the sugars was yielded from PSD and FS both in the short milling process with a low acid/substrate (A/S) concentration without any prior treatment.
The second part of this research focuses upon the conversion of FS into platform sugars using hydroxyalkylimidazolium hydrogen sulphate ionic liquids (ILs). Around 29 wt% of the sugars was produced from FS using an IL/water mixture. The added water acted as a co-solvent and played a critical role in the utilisation of these ILs. The blended water reduced the viscosity of the ILs and enhanced the mass transfer between solvent and solute. In addition, the anions of the ILs provided their acidic property in an aqueous solution and offered an acidic environment for hydrolysis simultaneously. / Tiivistelmä
Lignosellulossapohjainen biomassa on runsaimmin saatavilla oleva ja yksi lupaavimmista raaka-aineista biopolttoaineiden valmistukseen korvaamaan fossiilisia polttoaineita. Väitöskirjassa tutkitaan teollisuuden lignoselluloosapohjaisten sivutuotteiden, selluteollisuuden kuitulietteen ja sahateollisuuden sahanpurun (mäntypuru), muuntamista sokereiksi kahdella erilaisella ns. bifunktionaalisella esikäsittelyllä, joissa yhdistyvät lignoselluloosabiomassan perinteinen esikäsittely (hajotus) ja polysakkaridien sokeroituminen. Muodostuneet sokerit voidaan edelleen muuntaa biopolttoaineiksi ja -kemikaaleiksi.
Tutkimuksen ensimmäisessä vaiheessa sahanpuru ja kuituliete muunnettiin sokereiksi happokatalysoidussa mekaanisessa käsittelyssä, joka tehtiin kuulamyllyssä. Reaktiossa katalyyttisen käsittelyn tehokkuuteen vaikuttivat erityisesti jauhatuksen kineettinen energia, jauhatusaika, happokonsentraatio ja reaktioseoksen kosteus. Tulosten perusteella todettiin, että ilman lähtöaineen esikäsittelyä sekä sahanpurun että kuitulietteen sokerisaanto oli noin 30 massa% lyhyen, matalassa happokonsentraatiossa tehdyn jauhatuksen jälkeen.
Tutkimuksen toisessa vaiheessa kuituliete muutettiin sokereiksi käyttämällä ionista liuotinta (IL), hydroksialkyyli-imidatsoliumvetysulfaattia. Sokerisaanto kuitulietteestä oli noin 29 massa% IL-vesiseoksessa. Vesi toimi reaktiossa apuliuottimena ja sen rooli on keskeinen ionisten liuottimien käytössä. Sekoittunut vesi laski ionisen liuottimen viskositeettia sekä edisti aineensiirtoa liuottimen ja liukenevan aineen välillä. IL:n anionit lisäsivät happamuutta vesiliuoksessa ja mahdollistivat happamat olosuhteet samanaikaiselle hydrolyysille. / Abstract
Biomasse aus Lignocellulose ist der am häufigsten vorkommende nachwachsende Rohstoff der Erde und wird aktuell als eine der besten Alternativen für die Produktion von Biokraftstoffen gesehen. Diese sollen langfristig die fossilen Öl-basierten Produkte ersetzen. Diese Forschungsarbeit untersucht die Herstellung von Zucker aus Lignocellulose basierten Abfällen. Faserschlamm aus der Zellstoffindustrie und Kiefern-Sägemehl aus der Holzverarbeitung wurden durch zwei unterschiedliche Bifunktionelle Vorbehandlungen aufgespalten. Diese Bifunktionelle Vorbehandlung kombiniert zwei Schritte in einem Prozess; die gewöhnliche Dekonstruktion der Biomasse und die Verzuckerung von Polysacchariden aus der Lignocellulose. Das so erzeugte Produkt dient als Ausgangsstoff für die weitere Herstellung von Biokraftstoffen und Chemikalien.
Im ersten Teil dieser Forschungsarbeit wurden Kiefern-Sägemehl und Faserschlamm in einer Planeten-Kugelmühle zermahlen und gleichzeitig durch eine Säure depolymerisiert. Der Wirkungsgrad dieser säurekatalysierten mechanischen Depolymerisation wurde hauptsächlich durch die Übertragung der Reibungsenergie, der Mahldauer der Zerkleinerung, der Konzentration der Säure und der Feuchtegehalt der Proben beeinflusst. Etwa 30 wt% Zucker wurde so durch den kurzen Zermahlungsprozess aus Kiefern-Sägemehl und Faserschlamm gewonnen. Dabei wurden die Proben nicht vorbehandelt und enthielten eine geringe Säure/Probe Konzentration.
Der zweite Teil der Forschungsarbeit untersucht die Umwandlung von Faserschlamm in Zucker mittels der Ionischen Flüssigkeit (ILs) Hydroxyalkyl Imidazolium Hydrogensulfat. Aus den Faserschlamm Proben konnte 29 wt% Zucker durch eine Mischung von ILs und Wasser gewonnen werden. Das zugesetzte Wasser spielte als Co-Lösemittel eine wichtige Rolle in der Nutzung der Ionischen Flüssigkeit, dessen Viskosität so reduziert wurde. Dies führte zu einem erhöhten Stoffübergang zwischen dem Lösemittel und dem Solvat. Zusätzlich sorgten die Anionen der Ionischen Flüssigkeit für ein saures Milieu in der wässrigen Lösung und ermöglichten so eine gleichzeitige Hydrolyse.
|
Page generated in 0.043 seconds