• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 18
  • 13
  • 9
  • 8
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 157
  • 157
  • 106
  • 45
  • 43
  • 33
  • 28
  • 26
  • 23
  • 22
  • 21
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A technical evaluation of concentrating solar thermal power generation technologies for the Upington area of South Africa.

Tempies, Jonathan C. January 2012 (has links)
Studies undertaken by Eskom in 2001 identified three sites near the Northern Cape town of Upington which are suitable for a 100 MW Concentrating Solar Power (CSP) generating plant. Of the CSP technologies investigated, the central receiver option was identified as best for the Northern Cape, however almost none of Eskom’s analysis was made public. The basis of the central receiver’s suitability versus other CSP options is not publicly known. Given recent advances in concentrating systems, an argument exists for reassessing the suitability of various solar thermal technologies for bulk power generation. This study first characterises the incident solar radiation (insolation) levels at Upington from six data sources and assesses their quality. The data are then used to model performance of the parabolic trough, compact linear Fresnel reflector, central receiver, and dish-engine technologies. A software modelling tool of the United States National Renewable Energy Laboratory (System Advisor Model) is used to facilitate the comparison. Simulation results are compared with data from similar studies to ensure consistency of the CSP model inputs and performance outputs. Constraining the results to the environmental conditions of Upington, it is found that while central receiver technology produces less electricity per square kilometre of collector area, it uses less water than parabolic trough technology to obtain a higher annual electric output. Dish-engine technology has the most favourable annual electricity production to water-usage ratio, however, its modest annual electricity output and lack of energy storage capability weaken the case for it to match South Africa’s national load profile substantively. Examining the modelled month-to-month electricity output characteristic, the central receiver technology delivers significantly more electricity during the lower insolation winter period of the year than the competing technologies. This results in the central receiver technology achieving the highest annual electric output of the four technologies compared under the same insolation levels, strengthening the case for its implementation. As a whole, this work characterises the insolation levels at Upington, provides an analysis of the technical performance of competing CSP technologies for the proposed Northern Cape site, and argues quantitatively in favour of the central receiver option. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
42

A high-flux solar concentrating system.

Mouzouris, Michael. January 2011 (has links)
This research investigates the collection of concentrating solar energy and its transmission through optical fibres for use in high temperature applications such as lunar in-situ resource utilisation (ISRU) programmes, solar power generation and solar surgery. A prototype collector, known as the Fibre Optic Concentrating Utilisation System (FOCUS), has been developed and is capable of delivering high energy fluxes to a remote target. Salient performance results include flux concentrations approaching 1000 suns with an overall optical efficiency of 13%, measured from the inlet of the collector to the fibre outlet. The system comprises a novel solar concentrator designed to inject solar energy into a four metre long fibre optic cable for the transmission of light to the target. A nonimaging reflective lens in the form of a 600 mm diameter ring array concentrator was chosen for the collection of solar energy. Advantageous characteristics over the more common parabolic dish are its rearward focusing capacity and single stage reflection. The ring array comprises a nested set of paraboloidal elements constructed using composite material techniques to demonstrate a low-cost, effective fabrication process. At concentrator focus, a fibre optic cable of numerical aperture 0.37 is positioned to transport the highly concentrated energy away from the collector. The cable is treated to withstand UV exposure and high solar energy flux, and allows flexibility for target positioning. A computational analysis of the optical system was performed using ray tracing software, from which a predictive model of concentrator performance was developed to compare with experimental results. Performance testing of FOCUS was conducted using energy balance principles in conjunction with a flat plate calorimeter. Temperatures approaching 1500°C and flux levels in the region of 1800 suns were achieved before injection to the cable, demonstrating the optical system's suitability for use in high flux applications. During testing, peak temperatures exceeding 900°C were achieved at the remote target with a measured flux of 104 W/cm2 at the cable outlet. The predicted optical efficiency was 22%, indicating that further refinements to the ray trace model are necessary, specifically with regard to losses at the inlet to the cable. FOCUS was able to demonstrate its usefulness as a test bed for lunar in-situ resource utilisation technologies by successfully melting a lunar soil simulant. The system permits further terrestrial-based ISRU research, such as oxygen production from regolith and the fabrication of structural elements from lunar soil. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
43

Thermal Performance of a Solarus CPC-Thermal Collector

Šumić, Mersiha January 2014 (has links)
The  aim  of  this  master  thesis  is  an  investigation  of  the  thermal  performance  of  a  thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with  unknown  properties.  The  lower  and  upper  trough  of  the  collector  have  been  tested individually. In  order  to  accomplish  the  performance  of  the  two  collectors,  a  thorough  literature  study  in  the  fields  of  CPC  technology,  various  test  methods,  test  standards  for  solar thermal  collectors  as  well  as  the  latest  articles  relating  on  the  subject  were  carried  out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal  performance  was  tested  according  to  the  steady  state  test  method  as  described in the European standard 12975‐2. Furthermore, the thermal performance of  a  conventional  flat  plate  collector  was  carried  out  for  verification  of  the  test  method. The  CPC‐Thermal  collector  from  Solarus  was  tested  in  2013  and  the  results  showed  four  times  higher  values  of  the  heat  loss  coefficient  UL (8.4  W/m²K)  than  what  has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20  W/m²K.  The  upper  trough  achieved  an  optical  efficiency  of  75±6  %  and  a  heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients  are  valid  for  temperature  intervals  between  20°C  and  80°C.  The  different  absorber paintings have a significant impact on the results, the lower trough performs overall better.  The  results  achieved  in  this  thesis  show  lower  heat  loss  coefficients UL and higher optical efficiencies compared to the results from 2013.
44

Investigation of production systems for a building integrated photovoltaic thermal product

Bura, Sunil Kumar. January 2007 (has links)
Thesis (M.E. Mechanical Engineering)--University of Waikato, 2007. / Title from PDF cover (viewed May 6, 2008) Includes bibliographical references (p. 102-108)
45

Optimization of a SEGS solar field for cost effective power output

Bialobrzeski, Robert Wetherill January 2007 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Sheldon Jeter; Committee Member: Sam Shelton; Committee Member: Srinivas Garimella
46

Forecasting solar cycle 24 using neural networks /

Uwamahoro, Jean January 2008 (has links)
Thesis (Ph.D. (Physics & Electronics)) - Rhodes University, 2009 / A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science
47

Design and validation of a solar domestic hot water heating simulator

Cemo, Thomas A. Van Treuren, Kenneth W. January 2009 (has links)
Thesis (M.S.M.E)--Baylor University, 2009. / Includes bibliographical references (p. 133-134).
48

Energy survey on replacing a direct electrical heating system with an alternative heating system

Ruan, Wenbo January 2018 (has links)
With the ever-growing energy demand that world is currently going through and the danger of climate change around the corner, wagering in renewable energy seems to be the right path to create a more smart and green future. Sweden has put great effort on decreasing its dependency on oil, in fact in 2012 more than 50 % of its electricity came from the renewable source and has a plan in making it 100 % in 2040. However, when it comes to heating systems Sweden depends greatly on district heating, and situations which buildings are located outside the district heating system’s reach is not uncommon, hence for those buildings, other options such as solar power or heat pumps are considered. Many buildings located in Skutskär suffer from the problem stated above. The particular building analyzed in this thesis uses electrical radiator and furnace as sources of heat, which implies high energy uses and financial expenses. For this reason technical and financial analysis of using each alternative system for a single family house located in Skutskär had been done. Using solar powered system is deemed to be quite ineffective, as Sweden has poor solar radiation. In order to compensate the poor sun hours during the winter, 51 photovoltaic (PV) panels or 19 solar thermal panels would be required. This high initial investment needs long period of time in order to be profitable, 15 years for solar thermal system and 21 years for solar PV system. On the other hand, the results from the heat pumps are quite satisfactory, the fastest payback period is around 4 years. This is achieved by using air source heat pump (ASHP), the annual saving in this case is three times higher than using solar photovoltaic panels, making the usage of ASHP more attractive than any solar energy system. However, when annual saving is concerned, the ground source heat pump (GSHP) system is capable of generating even higher saving, but the initial investment is significantly higher, extending the payback period to 6 years.
49

Alternative energy supply study for a cottage in Vifors

Lumbier Fernandez, Mikel January 2018 (has links)
The present master thesis was done during the spring of 2018. A cottage located in Vifors is studied with regard to its heating requirements. At the time of the study, the house could not be inhabited the whole year because there was no tap hot water available and the space heating demand was covered by electricity. Thus, an alternative heating supply is required to be developed. As a strategic prerequisite, the solution should be achieved considering both solar thermal collectors and a heat pump.First, the characteristics of the building were collected/determined in order to obtain the total heating demand per month and hence annually. Parameters such as the U-values, roof orientation, room dimensions, ventilation rates and internal gains were required to configure the building model in the software IDA ICE 4.8. In addition, the amount of tap hot water required per year was determined as 17 m3 per year. Cold water at 5 °C had to be heated until 55 °C to obtain the tap hot water.Once the heating requirements were known, the most suitable solution was to use a combi system (solar thermal collectors and a heat pump). Solar energy could fulfil the demand in the summer and the heat pump provided energy in the winter. For a commercial model of the flat solar thermal collector (Vitosol 100-F) the solar system was sized according to the heating demand in the summer time. The maximum energy that could be obtained from the solar collectors in summer was calculated, the rest of the demand had to be fulfilled by a heat pump, model WPL-18 E.The achieved solution is compounded by the heat pump and 3 solar thermal collectors with a surface of 2.33 m2 each. The solar energy obtained is 1 843 kWh per year, which covers 9 % of the total annual heating demand (20 098 kWh). However, the 98 % of the heating demand during the summertime comes from the solar collectors. The investment cost is 113 900 SEK and the payback period is estimated in 8 years.
50

Viabilidade técnica e econômica do uso da energia solar térmica em condomínios horizontais com habitações populares / Technical and economic feasibility of the use of solar thermal energy in condominiums with popular dwellings

Moraes Santos, Eliana Cristina [UNESP] 04 March 2015 (has links) (PDF)
Made available in DSpace on 2015-07-13T12:10:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-03-04. Added 1 bitstream(s) on 2015-07-13T12:25:41Z : No. of bitstreams: 1 000832971.pdf: 1514299 bytes, checksum: 29a4cd55e16ecdbaead264c825fb9957 (MD5) / A disponibilidade de luz solar, transformada em energia, pode ser capturada em quase todo o mundo. Desde a década de 1990 o mercado da utilização de energia solar vem crescendo, porém informações sobre estudos de caso para a avaliação da inserção de aquecedores solares de água nos domicílios populares brasileiros ainda são escassas. O presente trabalho visa contribuir para reduzir essa carência e tem como objetivo avaliar a viabilidade técnica e econômica da inserção de aquecedores solares de água nas residências populares no município de Tremembé, localizado no Vale do Paraíba, estado de São Paulo, Brasil. O município de Tremembé possui uma área de 192 km² e conta com uma população de 42.027 habitantes, sendo um total de 10.632 domicílios. A avaliação foi efetuada numa amostra setorial do total de domicílios, através de um plano amostral aleatório estratificado, metodologia que permite conhecer melhor as características próprias de cada setor do município estudado. A pesquisa de campo foi efetuada com o método survey, com o total de 360 questionários, os quais foram aplicados a um representante de cada família. Imagens com as descrições e atributos dos setores censitários do IBGE foram tratadas no formato de extensão kmz. Foi necessária a construção de um cadastro no programa Excel para inserir os dados colhidos em campo e esses dados foram sobrepostos aos layers das imagens tratadas. O resultado desta pesquisa mostrou aceitação generalizada da população à possibilidade de instalações e utilização de sistemas de aquecimento solar de água, especialmente nas áreas rurais, principalmente por apresentar custo reduzido de energia elétrica no pico e aponta para a redução da demanda na rede elétrica. A pesquisa comprova que com a utilização de energia solar, o município pode economizar 31.680.000 kWh/ano, o que corresponde a R$ 9.504.000,00 /ano / The availability of sunlight converted into energy can be captured throughout the world. Since the 1990s the market for the use of solar energy has been growing, but information on case studies to assess the inclusion of solar water heaters in the popular Brazilian households are still scarce. The present work aims at contributing to reduce this gap and aims to assess the technical and economic feasibility of integration of solar water heaters in low-income households in the municipality Tremembé, located in the Paraíba Valley, State of São Paulo, Brazil. Tremembé has an area of 192 km ² and has a population of 42,027 inhabitants, with 10,632 households. The evaluation has done on a sectorial sample of total households. Effected through a stratified aleatory sampling plan, as this methodology allows better understanding the characteristics of each sector of the municipality. The field research was conducted with the survey method, with 360 questionnaires, which have been applied to a representative of each family. Images with descriptions and attributes of the official census sectors of IBGE have been treated in the extension kmz format. It was necessary to build a register in Excel to insert the data collected in the field and these data were overlaid on the images Leyers treated. The result of this research showed widespread acceptance of the population the possibility of facilities and use of solar water heating systems, especially the rural areas, mainly by presenting reduced cost of electric power in peak and points to reduced demand in the power grid. The research proves that with the use of solar energy, the city may save 31, 68 million kWh/year, which corresponds to R$ 9,504,000.00/ year

Page generated in 0.0657 seconds