• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 18
  • 13
  • 9
  • 8
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 157
  • 157
  • 106
  • 45
  • 43
  • 33
  • 28
  • 26
  • 23
  • 22
  • 21
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Key Socioeconomic Factors for Domestic Solar Energy : An interdisciplinary analysis of the characteristics of photovoltaic and solar thermal installations in three Swedish municipalities

Ekbring, Sofia January 2022 (has links)
As a response to the increasing demand for renewable power, the solar photovoltaic (PV) market is growing fast. In addition to PV systems, the energy from solar radiation can be converted intoheat energy in solar thermal (ST) systems. This study uses a method that identifies solar energy systems using aerial imagery and deep machine learning to create and evaluate an inventory of solar energy systems in three Swedish municipalities together with socioeconomic and demographic data, to understand the relation between different variables and PV and ST adoption. The variables are age, sex, birth region, education, unemployment, average income and economic standard. Information about the locations also include owner, time at residence, tax value, purpose of property and purpose of building. The relation is analyzed through a correlation and regression analysis at three different granularity levels: households, demographic statistical areas and municipalities. Out of 692 inventoried PV systems and 399 ST systems, the majority was installed in rural or regional center areas. The most common buildings were residential and complementary. Most of the properties were owned by individuals, and the tax value of properties was in general lower for ST systems, indicating that it is more common for companies to install PV systems and at larger properties. The average income, age and percentage of males are higher for households that have adopted PV and/or ST systems compared to the municipalities average. However, the difference is clearer for PV systems than for ST systems. The analysis concludes that share of the population in age group 45-64 years, share of males, share born in Sweden and high average income have a positive correlation to PV adoption. Share of the population within age group 25-44 years, unemployment and low economic standard isfound to have a negative correlation to PV deployment. Positive correlation to ST adoption is found for a share of the population within age group 45-64 years and born in Sweden. Share of population in age group 24-44 years and unemployment was found to have a negative correlation to ST deployment.
72

Analysis of the Impact of Solar Thermal Water Heaters on the Electrical Distribution Load

Jesudhason Maria Therasammal, Terry Bruno 07 October 2011 (has links)
In this research, the impact of solar thermal water heaters on the electric water heating load curve in a residential distribution circuit is analyzed with realistic hot water draw profiles. For this purpose, the electric and solar thermal water heater models are developed in MATLAB and validated with results from GridLAB-D and TRNSYS respectively. The solar thermal water heater model is developed for two types of collectors namely the flat plate and evacuated glass tube collector. Simulations are performed with the climate data from two cities - Madison, WI and Tampa, FL - which belong to two very different climate zones in the United States. Minute-by-minute electric energy consumptions in all three configurations of water heaters are modeled for a single water heater as well as a residential distribution circuit with 100 water heaters for daily as well as monthly time frames. The research findings include: The electric energy saving potential of a solar thermal water heater powered by auxiliary electric element is in the range of 40-80% as compared to an all-electric water heater depending on the site conditions such as ambient temperature, sunshine and wind speed. The simulation results indicate that the energy saving potential of a solar thermal water heater is in the range of 40-70% during winter and 60-80% during summer. Solar thermal water heaters aid in reducing the peak demand for electric water heating in a distribution feeder during sunshine hours when ambient temperatures are higher. The simulation results indicate that the peak reduction potential of solar thermal water heaters in a residential distribution feeder is in the range of 25-40% during winter and 40-60% during summer. The evacuated glass tube collectors save an additional 7-10% electric energy compared to the flat plate collectors with one glass pane during winter and around 10-15% during summer. The additional savings result from the capability of glass tube collectors to absorb ground reflected radiation and diffuse as well as direct beam radiation for a wider range of incidence angles. Also, the evacuated glass tube structure helps in reducing wind convective losses. From the simulations performed for Madison, WI and Tampa, FL, it is observed that Tampa, FL experiences more energy savings in winter than Madison, WI, while the energy savings are almost the same in summer. This is due to the fact that Tampa, FL has warmer winters with higher ambient temperatures and longer sunshine hours during the day compared to Madison, WI while the summer temperatures and sunshine hours are almost the same for the two cities. As expected, the simulation results prove the fact that lowering the hot water temperature set point will result in the reduction of electricity consumption. For a temperature reduction from 120 deg. F to 110 deg. F, electric water heaters save about 25-35% electric energy whereas solar thermal water heaters save about 30-40% auxiliary electric energy for the same temperature reduction. For the flat plate collectors, glass panes play an important role in auxiliary electric energy consumption. Flat plate collectors with two glass panes save about 10-15% auxiliary electric energy compared to those with no glass panes and about 3-5% energy saving compared to collectors with one glass pane. This is because there are reduced wind convective losses with glass panes. However, there are also transmittance losses from glass panes and there are upper limits on how many glass panes can be used. Results and findings from this research provide valuable insight into the benefits of solar thermal water heaters in a residential distribution feeder, which include the energy savings and peak demand reduction. / Master of Science
73

A Design Concept of a Volumetric Solar Receiver for Supercritical CO2 Brayton Cycle

Khivsara, Sagar D January 2014 (has links) (PDF)
Recently, the supercritical carbon dioxide (s-CO2) Brayton cycle has been identified as a promising candidate for solar-thermal energy conversion due to its potentially high thermal efficiency (50%, for turbine inlet temperatures of ~ 1000 K). Realization of such a system requires development of solar receivers which can raise the temperature of s-CO2 by over 200 K, to a receiver outlet temperature of 1000 K. Volumetric receivers are an attractive alternative to tubular receivers due to their geometry, functionality and reduced thermal losses. A concept of a ceramic pressurized volumetric receiver for s-CO2 has been developed in this work. Computational Fluid Dynamics (CFD) analysis along with a Discrete Ordinate method (DOM) radiation heat transfer model has been carried out, and the results for temperature distribution in the receiver and the resulting thermal efficiency are presented. Issues regarding material selection for the absorber structure, window, coating, receiver body and insulation are also addressed. A modular small scale prototype with 0.5 kWth solar heat input has been designed. The design of a small scale s-CO2 loop for testing this receiver module is also presented in this work. There is a lot of ongoing investigation for design and simulation of different configurations of heat exchangers and solar receivers using s-CO2 as the working fluid, in which wall temperatures up to 1000 K are encountered. While CO2 is considered to be transparent as far as solar radiation spectrum is concerned, there may be considerable absorption of radiation in the longer wavelength range associated with radiation emission from the heated cavity walls and tubes inside the receivers. An attempt has been made, in this study, to include radiation modelling to capture the effect of absorption bands of s-CO2 and the radiative heat transfer among the equipment surfaces. As a case study, a numerical study has been performed to evaluate the contribution of radiative heat transfer as compared to convection and conduction, for s-CO2 flow through a circular pipe. The intent is to provide a guideline for future research to determine the conditions for which radiation heat transfer modelling inside the pipe can be significant, and what errors can be expected otherwise. The effect of parameters such as Reynolds number, pipe diameter, length to diameter ratio, wall emissivity and total wall heat flux has been studied. The effect of radiation modelling on wall temperatures attained for certain amount of heat flux to be transferred to s-CO2 is also studied. The resulting temperature distribution, in turn, affects the estimation of heat loss to the environment
74

Experimental and Life Cycle Analysis of a Solar Thermal Adsorption Refrigeration (STAR) Using Ethanol - Activated Carbon

Karki, Bipin 31 May 2018 (has links)
No description available.
75

Performance characteristics of packed bed thermal energy storage for solar thermal power plants

Allen, Kenneth Guy 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Solar energy is by far the greatest energy resource available to generate power. One of the difficulties of using solar energy is that it is not available 24 hours per day - some form of storage is required if electricity generation at night or during cloudy periods is necessary. If a combined cycle power plant is used to obtain higher efficiencies, and reduce the cost of electricity, storage will allow the secondary cycle to operate independently of the primary cycle. This study focuses on the use of packed beds of rock or slag, with air as a heat transfer medium, to store thermal energy in a solar thermal power plant at temperatures sufficiently high for a Rankine steam cycle. Experimental tests were done in a packed bed test section to determine the validity of existing equations and models for predicting the pressure drop and fluid temperatures during charging and discharging. Three different sets of rocks were tested, and the average size, specific heat capacity and density of each set were measured. Rock and slag samples were also thermally cycled between average temperatures of 30 ºC and 510 ºC in an oven. The classical pressure drop equation significantly under-predicts the pressure drop at particle Reynolds numbers lower than 3500. It appears that the pressure drop through a packed bed is proportional to the 1.8th power of the air flow speed at particle Reynolds numbers above about 500. The Effectiveness-NTU model combined with a variety of heat transfer correlations is able to predict the air temperature trend over the bed within 15 % of the measured temperature drop over the packed bed. Dolerite and granite rocks were also thermally cycled 125 times in an oven without breaking apart, and may be suitable for use as thermal storage media at temperatures of approximately 500 ºC. The required volume of a packed bed of 0.1 m particles to store the thermal energy from the exhaust of a 100 MWe gas turbine operating for 8 hours is predicted to be 24 × 103 m3, which should be sufficient to run a 25-30 MWe steam cycle for over 10 hours. This storage volume is of a similar magnitude to existing molten salt thermal storage. / AFRIKAANSE OPSOMMING: Sonenergie is die grootste energiebron wat gebruik kan word vir krag opwekking. ‘n Probleem met die gebruik van sonenergie is dat die son nie 24 uur per dag skyn nie. Dit is dus nodig om die energie te stoor indien dit nodig sal wees om elektrisiteit te genereer wanneer die son nie skyn nie. ‘n Gekombineerde kringloop kan gebruik word om ‘n hoër benuttingsgraad te bereik en elektrisiteit goedkoper te maak. Dit sal dan moontlik wees om die termiese energie uit die primêre kringloop te stoor, wat die sekondêre kringloop onafhanklik van die primêre kringloop sal maak. Dié gevalle studie ondersoek die gebruik van ‘n slakof- klipbed met lug as hitteoordragmedium, om te bepaal of dit moontlik is om hitte te stoor teen ‘n temperatuur wat hoog genoeg is om ‘n Rankine stoom kringloop te bedryf. Eksperimentele toetse is in ‘n toets-bed gedoen en die drukverandering oor die bed en die lug temperatuur is gemeet en vergelyk met voorspelde waardes van vergelykings en modelle in die literatuur. Drie soorte klippe was getoets. Die gemiddelde grootte, spesifieke hitte-kapasiteit en digtheid van elke soort klip is gemeet. Klip en slak monsters is ook siklies tussen temperature van 30 ºC en 510 ºC verkoel en verhit. Die klassieke drukverlies vergelyking gee laer waardes as wat gemeet is vir Reynolds nommers minder as 3500. Dit blyk dat die drukverlies deur ‘n klipbed afhanklik is van die lug vloeispoed tot die mag 1.8 as die Reynolds nommer groter as omtrent 500 is. Die ‘Effectiveness-NTU’ model gekombineerd met ‘n verskeidenheid van hitteoordragskoeffisiënte voorspel temperature binne 15 % van die gemete temperatuur verskil oor die bed. Doloriet en graniet klippe het 125 sikliese toetse ondergaan sonder om te breek, en is miskien gepas vir gebruik in ‘n klipbed by temperature van sowat 500 ºC Die voorspelde volume van ‘n klipbed wat uit 0.1 m klippe bestaan wat die termiese energie vir 8 ure uit die uitlaat van ‘n 100 MWe gasturbiene kan stoor, is 24 × 103 m3. Dit behoort genoeg te wees om ‘n 25 – 30 MWe stoom kringloop vir ten minste 10 ure te bedryf. Die volume is min of meer gelyk aan dié van gesmelte sout store wat alreeds gebou is.
76

Solar assisted power generation (SAPG) : investigation of solar preheating of feedwater

Pierce, Warrick Tait 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Solar Assisted Power Generation (SAPG) can be seen as a synergy of solar and fossil plants – combining the environmental benefits of the former and the scale, efficiency and reliability of the latter. SAPG offers great potential for cost effective utilization of solar energy on utility scale and could accelerate the adoption of solar thermal energy technologies in the short and medium term, especially in countries with a significant coal base and a good solar resource such as Australia, China, United States, India and South Africa. SAPG is the replacement of bled-off steam in a Regenerative Rankine power cycle. Power plant simulations were performed using weather data for Lephalale, South Africa (Matimba power station). With an increase in the solar field outlet temperature, an increase in overall solar to electric efficiency was observed, superior to a stand-alone Solar Thermal Power Plant(s) (STPP) at similar temperatures. The performance of four solar collector technologies was compared: flat plate, evacuated tube, Linear Fresnel (LF) and Parabolic Trough (PT). This comparison was limited to the normal incidence angles of irradiation. For this application, nonconcentrating technologies are not competitive. For non-normal incidence angles, annual simulations were limited to PT and LF at final feedwater heater temperatures. The actual aperture area of around 80 000 m2 was used (50 MW thermal based on LF). On an equal aperture area basis, PT outperforms LF significantly. For the conventional North-South arrangement, LF needs to be around 53% of the specific installation cost (in $/m2 aperture area) of PT to be cost competitive. A SAPG plant at Lephalale was compared to a stand-alone Solar Thermal Power Plant STPP in a good solar resource area, namely Upington, South Africa – Parabolic Trough solar collector fields of equal size were considered for both configurations. It was found that the annual electricity generated with a SAPG plant is more than 25% greater than a stand-alone STPP. If the cost of SAPG is taken as 72% of the cost of a stand-alone STPP, this translates into SAPG being 1.8 times more cost effective than stand-alone STPP. Furthermore, SAPG performs better in high electricity demand months (South African winter – May to August). Stand-alone STPP have been adopted in South Africa and are currently being built. This was achieved by the government creating an attractive environment for Independent Power Producers (IPP). Eskom, the national power supplier, is currently investigating solar boosting at existing Eskom sites. This report argues that on a national level, SAPG, specifically solar preheating of feedwater, is a more viable solution for South Africa, with both its significant coal base and good solar resource. / AFRIKAANSE OPSOMMING: Son ondersteunde krag generasie (SOKG) kan gesien word as sinergie van sonkrag en fossiele brandstof aanlegte – dit voeg die omgewings voordele van die eersgenoemde en die grote, effektiwiteit en betroubaarheid van die laasgenoemde by mekaar. SOKG opper groot potensiaal vir koste effektiewe gebruik van son energie op nutsmaatskappyskaal en kan die aanvaarding van sontermiese energietegnologieë in die kort en medium termyn versnel, veral in lande met beduidende kool reserwes en goeie sonkrag voorkoms soos Australië, China, Verenigde State van Amerika, Indië en Suid-Afrika. SOKG impliseer die vervanging van aftap stoom in die regeneratiewe Rankine krag kringloop. Kragstasie simulasies was gedoen met die gebruik van weer data van Lephalale, Suid-Afrika (Matimba kragstasie). Met die toename van die sonveld uitlaat temperatuur kon oorhoofse son-na-elektrisiteit effektiwiteit vasgestel word, wat hoër is as die van alleenstaande sontermiese krag stasie (STKS) by soortgelyke temperature. Die effektiwiteit van vier son kollekteerder tegnologieë was vergelyk: plat plaat, vakuum buis, lineêre Fresnel (LF) en paraboliese trog (PT). Die vergelyking was beperk tot normale inval van bestraling. Vir hierdie toepassing is nie-konsentreerende tegnologie nie mededingend nie. Vir nie-normale inval hoeke was jaarlange simulasies beperk tot PT en LF by finale voedingswater temperatuur. Die werklike opening area van omtrent 80 000 m2 was gebruik (50 MW termies gebaseer op LF). By gelyke opening area, uitpresteer PT LF beduidend. Vir die gebruiklike Noord-Suid rankskikking benodig LF omtrent 53% van die spesifieke installasie kostes (in $/m2 opening area) van PT om kostes mededingend te kan wees. ‘n SOKG aanleg by Lephalale was vergelyk met alleenstaande STKS in die goeie son voorkoms gebied van Upington, Suid-Afrika – Paraboliese trog kollekteerder velde van gelyke grote was oorweeg vir al twee konfigurasies. Dit was gevind dat die jaarlikse elektrisiteit gegenereer vanaf SOKG meer as 25% is as die van alleenstaande STKS. Indien SOKG oorweeg word met 72% van die kostes van alleenstaande STKS, dan beteken dit dat SOKG 1.8 keer meer koste effektief is as alleenstade STKS. Verder, SOKG presteer beter in die hoer elektrisiteitsnavraag maande (Suid- Afrikaanse winter – May tot Augustus). Alleenstaande STKS is gekies vir Suid-Afrika en word tans gebou. Dit is bereik deur dat die regering ‘n aantreklike omgewing geskep het vir onafhanglike krag produsente. Eskom ondersoek tans SOKG by bestaande Eskom persele. Hierdie verslag beweer dat op nasionale/Eskom vlak, SOKG, besonders son voorverhitting van voedingswater, meer haalbare oplossing is vir Suid-Afrika met sy beduidende koolreserwes en goeie son voorkoms.
77

Evaluating the uncertainty in the performance of small scale renewables

Thirkill, Adam January 2015 (has links)
The successful delivery of low-carbon housing (both new and retrofitted) is a key aspect of the UK s commitment to an 80% reduction in carbon emissions by 2050. In this context, the inclusion of small-scale building-integrated renewable energy technologies is an important component of low carbon design strategies, and is subject to numerous regulation and incentive schemes (including the Renewable Heat Incentive (RHI)) set up by government to encourage uptake and set minimum performance benchmarks. Unfortunately there are numerous examples of in-use energy and carbon performance shortfalls for new and retrofitted buildings this is termed the performance gap . Technical and human factors associated with building subsystem performance, which are often not considered in design tools used to predict performance, are the root cause of performance uncertainty. The research presented in this doctoral thesis aims to develop and apply a novel probabilistic method of evaluating the performance uncertainty of solar thermal systems installed in the UK. Analysis of measured data from a group of low carbon retrofitted dwellings revealed that the majority of buildings failed to meet the designed-for carbon emissions target with an average percentage difference of 60%. An in-depth case study technical evaluation of one of these dwellings showed significant dysfunction associated with the combined ASHP/solar thermal heating system, resulting in a performance gap of 94%, illustrating that the performance gap can be regarded as a whole-system problem, comprising a number of subsystem causal factors. Using a detailed dataset obtained from the UK s largest field trial of domestic solar thermal systems, a cross-cutting evaluation of predicted vs. measured performance similarly revealed a discrepancy with a mean percentage difference in predicted and measured annual yield of -24%. Having defined the nature and extent of underperformance for solar thermal technology in the UK, causal factors influencing performance were mapped and the associated uncertainty quantified using a novel knowledge-based Bayesian network (BN). In addition, the BN approach along with Monte Carlo sampling was applied to the well-established BREDEM model in order to quantify performance uncertainty of solar thermal systems by producing distributions of annual yield. As such, the modified BN-based BREDEM model represents a significant improvement in the prediction of performance of small-scale renewable energy technologies. Finally, financial analysis applied to the probabilistic predictions of annual yield revealed that the current UK RHI scheme is unlikely to result in positive returns on investment for solar thermal systems unless the duration of the payments is extended or electricity is the primary source of heating.
78

Optimal fönsterstorlek för kontors- och behandlingsrum – Länssjukhuset Kalmar / Optimal window size for office- and treatment rooms – County Hospital Kalmar

Nicoară, Alexandru, Carlsén, Arvid January 2019 (has links)
Detta examensarbete beskriver optimeringsprocessen för ett fönster utifrån relevanta parametrar som tillämpas i Miljöbyggnad 3.0 med avseende på energi och inomhusmiljö. Miljöbyggnad 3.0 är ett miljöcertifieringsystem som bygger på Boverkets Byggregler och Arbetsmiljöverkets regler om arbetsmiljö. De parametrar som fönsterstorleken optimerats utifrån är solvärmelasten, värmeeffektbehovet, den specifika energianvändningen, dagsljuset samt det termiska inneklimatet sommar- och vinter. För betyget i Miljöbyggnad 3.0 på dessa parametrar har fönstrets storlek i förhållande till rummets storlek en avgörande betydelse. Objekten för studien bestod av två typrum, ett behandlingsrum och ett kontorsrum, som kommer att ligga i en framtida byggnad vid Kalmars Länssjukhus. Med hjälp av utredningar och jämförelser mellan teoretiska utgångspunkter och praktiska simuleringar på relevanta parametrar som tillämpas i Miljöbyggnad 3.0 har endast två fönstermått valts för att uppnå minst betygen SILVER i Miljöbyggnad 3.0. Påverkan av invändiga solskydd har även studerats i arbetet.
79

Méthodologie d'optimisation d'un nouveau concept de système solaire thermique hybride eau-air / Methodology for optimizing a new concept of hybrid water-air solar thermal system

Carbajo Jiménez, Patricia 20 December 2018 (has links)
En réponse à l’évolution de la réglementation thermique, les bâtiments tendent à être mieux isolés et plus étanches, diminuant leurs besoins de chauffage. La ventilation, nécessaire pour garantir la qualité de l’air intérieur, représente une perte énergétique non négligeable. De plus, les besoins d’eau chaude sanitaire (ECS) deviennent prépondérants par rapport à ceux de chauffage. Dans ce contexte, les systèmes solaires thermiques peuvent fournir une part importante des besoins du bâtiment. Ce travail étudie ainsi un système solaire thermique qui produit de l’ECS et préchauffe l’air de ventilation. Le principe de fonctionnement est d'abord analysé expérimentalement. Le concept se présentant prometteur, une co-simulation entre Dymola (langage Modelica) et EnergyPlus permet d'étudier plus en détail les performances du système dans son environnement (le bâtiment) pour différents hypothèses et paramètres de fonctionnement. Les résultats montrent un meilleur rendement des capteurs et du ballon par rapport à un CESI classique, ainsi qu’une augmentation de la fraction solaire pour la production simultanée d’ECS, de préchauffage d’air et de chauffage / Thermal regulation demands the construction of more efficient buildings that use less energy, in particular for heating. Air renewal, which is necessary to guarantee indoor air quality, represents a significant thermal loss in the energy balance of efficient buildings. Moreover, domestic hot water (DHW) needs become more important than heating needs. In this context, solar thermal systems can produce a significant part of the thermal needs in buildings. Indeed, this work studies a solar thermal system producing DHW and fresh air preheating. The operating principle is first analysed experimentally. As the system seems promising, a co-simulation between Dymola (using the Modelica language) and EnergyPlus is used to do a detailed study of the system performances in a building based on different assumptions and for different design parameters. The results show a better collector yield and tank efficiency regarding a classic solar water heater, as well as an increase of the solar fraction including DHW production, air preheating and space heating
80

Simulação e projeto de um sistema solar térmico para complemento energético no processo de cura de tabaco

Oliveira, Israel de 09 October 2014 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-03-30T18:22:27Z No. of bitstreams: 1 Israel de Oliveira.pdf: 2249672 bytes, checksum: 651678b57093fe8cfdec97b6e6da1274 (MD5) / Made available in DSpace on 2015-03-30T18:22:27Z (GMT). No. of bitstreams: 1 Israel de Oliveira.pdf: 2249672 bytes, checksum: 651678b57093fe8cfdec97b6e6da1274 (MD5) Previous issue date: 2014-01-31 / JTI Processadora de Tabaco do Brasil Ltda / Programa de Bolsas de Estudo Talentos Tecnosinos / O Brasil é um dos maiores produtores mundiais de tabaco de estufa e a região sul é a maior responsável por essa produção, principalmente o estado do Rio Grande do Sul. Uma das etapas do processo de beneficiamento desse produto é a secagem (cura) das folhas, que utiliza essencialmente lenha como fonte de energia. Esse trabalho apresenta um estudo dos aspectos energéticos que envolvem a cura de tabaco da espécie Virgínia, os resultados e análises das simulações realizadas no software TRNSYS, de um sistema solar térmico com aquecimento de água para complemento energético desse processo de cura. A partir de dados experimentais obtidos em processos de cura, foram definidos os parâmetros mais importantes para a determinação da carga térmica necessária e calculadas as perdas térmicas envolvidas. Os resultados apresentados pelas simulações mostraram que o sistema de energia solar proposto, atuando como fonte auxiliar de energia em uma estufa do tipo bulk, é capaz de atender completamente a carga térmica da primeira fase do processo de cura e contribuir com o aumento da temperatura na estufa necessário à cura dessa espécie de tabaco, gerando reduções no consumo de lenha do processo da ordem de 18 a 39 %, considerando que esse ocorra em um período de sete dias ensolarados no verão, na região de Santa Cruz do Sul-RS. / Brazil is one of the largest barn tobacco producers and the southern region is largely responsible for this production, especially the state of Rio Grande do Sul. One of the steps involved in this product’s processing chain is the leaves drying (curing), which essentially uses firewood as energy source. This work presents a study of the energy aspects involving the curing of Virginia tobacco, the results and analysis of simulations, using the TRNSYS software, of a solar thermal energy system with water heating to complement this curing process. From the experimental data obtained in curing processes, the most important parameters for the determination of thermal load were defined and the heat losses involved were calculated. The results presented by these simulations showed that the proposed solar energy system, acting as an auxiliary power source of a bulk type barn, can completely meet the thermal load of the first phase of the curing process and contribute to the increase of temperature in the barn necessary to cure this kind of tobacco, reducing 18-39 % the firewood consumption in the process, assuming a seven sunny days period during the summer at the region of Santa Cruz do Sul – RS.

Page generated in 0.091 seconds