11 |
Automatic positioner and control system for a motorized parabolic solar reflectorPrinsloo, Gerhardus Johannes 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Most rural African villages enjoy high levels of sunlight, but rolling out solar
power generation technology to tap into this renewable energy resource at remote
rural sites in Africa pose a number of design challenges. To meet these
challenges, a project has been initiated to design, build and test/evaluate a
knock down 3 kW peak electrical stand-alone self-tracking dual-axis concentrating
solar power system.
This study focusses on the mechatronic engineering aspects in the design
and development of a dynamic mechatronic platform and digital electronic
control system for the stand-alone concentrating solar power system. Design
specifications require an accurate automatic positioner and control system for
a motorized parabolic solar reflector with an optical solar harnessing capacity
of 12 kWt at solar noon. It must be suitable for stand-alone rural power generation.
This study presents a conceptual design and engineering prototype
of a balanced cantilever tilt-and-swing dual-axis slew drive actuation means
as mechatronic solar tracking mobility platform for a ∼12 m2 lightweight
parabolic solar concentrator. Digital automation of the concentrated solar
platform is implemented using an industrial Siemens S7-1200 programmable
logic controller (PLC) with digital remote control interfacing, pulse width modulated
direct current driving, and electronic open loop/closed loop solar tracking
control. The design and prototype incorporates off-the-shelf components
to support local manufacturing at reduced cost and generally meets the goal
of delivering a dynamic mechatronic platform for a concentrating solar power
system that is easy to transport, assemble and install at remote rural sites
in Africa. Real-time experiments, conducted in the summer of South Africa,
validated and established the accuracy of the engineering prototype positioning
system. It shows that the as-designed and -built continuous solar tracking
performs to an optical accuracy of better than 1.0◦ on both the azimuth and
elevation tracking axes; and which is also in compliance with the pre-defined
design specifications.
Structural aspects of the prototype parabolic dish are evaluated and optimized
by other researchers while the Stirling and power handling units are under
development in parallel projects. Ultimately, these joint research projects
aim to produce a locally manufactured knock down do-it-yourself concentrated
solar power generation kit, suitable for deployment into Africa. / AFRIKAANSE OPSOMMING: Landelike gebiede in Afrika geniet hoë vlakke van sonskyn, maar die ontwerp
van betroubare sonkrag tegnologie vir die benutting van hierdie hernubare
energie hulpbron by afgeleë gebiede in Afrika bied verskeie uitdagings. Om
hierdie uitdagings te oorkom, is ’n projek van stapel gestuur om ’n afbreekbare
3 kW piek elektriese alleenstaande selfaangedrewe dubbel-as son-konsentreeder
te ontwerp, bou en te toets.
Hierdie studies fokus op die megatroniese ingenieurs-aspekte in die ontwerp
en ontwikkeling van ’n dinamiese megatroniese platform en ’n digitale
elektroniese beheerstelsel vir die alleenstaande gekonsentreerde sonkrag stelsel.
Ontwerp spesifikasies vereis ’n akkurate outomatiese posisionering en beheer
stelsel vir ’n motor aangedrewe paraboliese son reflekteerder met ’n optiesekollekteer-
kapasiteit van 12 kWt by maksimum sonhoogte, en veral geskik wees
vir afgeleë sonkrag opwekking. Hierdie studie lewer ’n konsepsuele ontwerp en
ingenieurs-prototipe van ’n gebalanseerde dubbelas swaai-en-kantel swenkrat
aandrywingsmeganisme as megatroniese sonvolg platform vir ’n ∼12 m2 liggewig
paraboliese son konsentreerder. Digitale outomatisering van die son konsentreerder
platform is geimplementeer op ’n industriële Siemens S7-1200 programmeerbare
logiese beheerder (PLB) met ’n digitale afstandbeheer koppelvlak,
puls-wydte-gemoduleerde gelykstroom aandrywing en elektroniese ooplus
en geslote-lus sonvolg beheer. Die ontwerp en prototipe maak gebruik van
beskikbare komponente om lae-koste plaaslike vervaardiging te ondersteun en
slaag in die algemeen in die doel om ’n dinamiese megatroniese platform vir ’n
gekonsentreerde sonkrag stelsel te lewer wat maklik vervoer, gebou en opgerig
kan word op afgeleë persele in Afrika. Intydse eksperimente is gedurende die
somer uitgevoer om die akkuraatheid van die prototipe posisionering sisteem
te evalueer. Dit toon dat die sisteem die son deurlopend volg met ’n akkuraatheid
beter as 1.0◦ op beide die azimut en elevasie sonvolg asse, wat voldoen
aan die ontwerp spesifikasies.
Strukturele aspekte van die prototipe paraboliese skottel word deur ander
navorsers geëvalueer en verbeter terwyl die Stirling-eenheid en elektriese sisteme
in parallelle projekte ontwikkel word. Die uiteindelike doel met hierdie
groepnavorsing is om ’n plaaslik vervaardigde doen-dit-self sonkrag eenheid te
ontwikkel wat in Afrika ontplooi kan word.
|
12 |
Investigation of solar applicable gas cyclesGopalakrishna, Sandeep 22 April 2013 (has links)
This thesis presents the thermodynamic and economic assessment of gas power cycles for 100 MW solar thermal power generation systems. A gas power cycle for solar power generation is a totally different technology from the current state of the art solar power generation systems. As a result, this thesis provides an assessment of the solar power generation systems with gas power cycles and provides guidance in the selection of design and operating parameters for gas power cycle based solar power generation system. The gas power cycle based power generation systems are assessed by means of thermodynamic and economic models developed and simulated using commercial thermodynamic analysis software. The gas cycle based power generation systems considered in this study are Cold Gas Turbine, High Temperature Solar Gas Turbine and Lorentz Cycle Gas Turbine. The system models are assessed for their thermodynamic performance using theory based turbo-machinery models with practical performance and loss data. In addition, extensive cost models have been developed for assessing the economic performance of the system models to determine their practical feasibility. The results from this study indicate that the most economical power generation system is the HTSGT system for a high peak cycle temperature utilizing the central receiver power tower solar collector system. The LCGT system also has a comparable performance at the same operating temperature. The CGT system assessed for operating with parabolic trough solar collector system at a lower peak cycle temperature had an inferior performance compared to the current state of the art technology for the power generation using parabolic troughs.
|
13 |
A NOVEL SOLAR THERMAL MEMBRANE DISTILLATION SYSTEM FOR DRINKING WATER PRODUCTION IN UNDEVELOPED AREASUnknown Date (has links)
In this research, a heat localizing solar thermal membrane distillation system has been developed for producing potable water from untreated surface water, wastewater, and seawater, using solely solar thermal energy. Unlike most other membrane technologies, this system requires no electrical power or equipment for its operation. The high production rate was achieved through the effective evaporation of water molecules within the pores of the membrane without dissipating much heat to the bulk feed water. It can remove suspending particles, microorganisms, inorganic salts, as well as organic contaminants from the feed water. The system can produce potable water for 32, 18, and 10 days on average under simulated sunlight when distilling seawater, canal water, and municipal wastewater, respectively, without cleaning the membrane. Low cost, high energy efficiency (i.e., 55%), and good water quality make the new system feasible for undeveloped areas where basic water treatment is lacking. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
|
14 |
An optimization model for a solar hybrid water heating and adsorption ice-making systemYeung, King-ho., 楊景豪. January 2003 (has links)
published_or_final_version / abstract / toc / Mechanical Engineering / Master / Master of Philosophy
|
15 |
A technical evaluation of concentrating solar thermal power generation technologies for the Upington area of South Africa.Tempies, Jonathan C. January 2012 (has links)
Studies undertaken by Eskom in 2001 identified three sites near the Northern Cape town of Upington which are suitable for a 100 MW Concentrating Solar Power (CSP) generating plant. Of the CSP technologies investigated, the central receiver option was identified as best for the Northern Cape, however almost none of Eskom’s analysis was made public. The basis of the central receiver’s suitability versus other CSP options is not publicly known. Given recent advances in concentrating systems, an argument exists for reassessing the suitability of various solar thermal technologies for bulk power generation.
This study first characterises the incident solar radiation (insolation) levels at Upington from six data sources and assesses their quality. The data are then used to model performance of the parabolic trough, compact linear Fresnel reflector, central receiver, and dish-engine technologies. A software modelling tool of the United States National Renewable Energy Laboratory (System Advisor Model) is used to facilitate the comparison. Simulation results are compared with data from similar studies to ensure consistency of the CSP model inputs and performance outputs.
Constraining the results to the environmental conditions of Upington, it is found that while central receiver technology produces less electricity per square kilometre of collector area, it uses less water than parabolic trough technology to obtain a higher annual electric output. Dish-engine technology has the most favourable annual electricity production to water-usage ratio, however, its modest annual electricity output and lack of energy storage capability weaken the case for it to match South Africa’s national load profile substantively. Examining the modelled month-to-month electricity output characteristic, the central receiver technology delivers significantly more electricity during the lower insolation winter period of the year than the competing technologies. This results in the central receiver technology achieving the highest annual electric output of the four technologies compared under the same insolation levels, strengthening the case for its implementation.
As a whole, this work characterises the insolation levels at Upington, provides an analysis of the technical performance of competing CSP technologies for the proposed Northern Cape site, and argues quantitatively in favour of the central receiver option. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
|
16 |
A high-flux solar concentrating system.Mouzouris, Michael. January 2011 (has links)
This research investigates the collection of concentrating solar energy and its transmission through optical fibres for use in high temperature applications such as lunar in-situ resource utilisation (ISRU) programmes, solar power generation and solar surgery. A prototype collector, known as the Fibre Optic Concentrating Utilisation System (FOCUS), has been developed and is capable of delivering high energy fluxes to a remote target. Salient performance results include flux concentrations approaching 1000 suns with an overall optical efficiency of 13%, measured from the inlet of the collector to the fibre outlet.
The system comprises a novel solar concentrator designed to inject solar energy into a four metre long fibre optic cable for the transmission of light to the target. A nonimaging reflective lens in the form of a 600 mm diameter ring array concentrator was chosen for the collection of solar energy. Advantageous characteristics over the more common parabolic dish are its rearward focusing capacity and single stage reflection. The ring array comprises a nested set of paraboloidal elements constructed using composite material techniques to demonstrate a low-cost, effective fabrication process. At concentrator focus, a fibre optic cable of numerical aperture 0.37 is positioned to transport the highly concentrated energy away from the collector. The cable is treated to withstand UV exposure and high solar energy flux, and allows flexibility for target positioning.
A computational analysis of the optical system was performed using ray tracing software, from which a predictive model of concentrator performance was developed to compare with experimental results. Performance testing of FOCUS was conducted using energy balance principles in conjunction with a flat plate calorimeter. Temperatures approaching 1500°C and flux levels in the region of 1800 suns were achieved before injection to the cable, demonstrating the optical system's suitability for use in high flux applications. During testing, peak temperatures exceeding 900°C were achieved at the remote target with a measured flux of 104 W/cm2 at the cable outlet. The predicted optical efficiency was 22%, indicating that further refinements to the ray trace model are necessary, specifically with regard to losses at the inlet to the cable. FOCUS was able to demonstrate its usefulness as a test bed for lunar in-situ resource utilisation technologies by successfully melting a lunar soil simulant. The system permits further terrestrial-based ISRU research, such as oxygen production from regolith and the fabrication of structural elements from lunar soil. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
|
17 |
A consideration of cycle selection for meso-scale distributed solar-thermal powerPrice, Suzanne 08 July 2009 (has links)
Thermodynamic and thermoeconomic aspects of 12.5 kW residential solar-thermal power generating systems suitable for distributed, decentralized power generation paradigm are presented in this thesis. The design of a meso-scale power system greatly differs from centralized power generation. As a result, this thesis provides guidance in the selection of the power cycle and operating parameters suitable for meso-scale power generation.
Development of standard thermodynamic power cycle computer simulations provides means for evaluation of the feasibility of meso-scale solar-thermal power generation. The thermodynamic power cycles considered in this study are the Rankine cycle, the organic Rankine cycle with toluene, R123, and ethylbenzene as working fluids, the Kalina cycle, and the Maloney-Robertson cycle. From a strictly thermodynamic perspective, the cycles are evaluated based on first- and second-law efficiencies. Additionally, the study includes economic feasibility through thermoeconomic characterization that encompasses a meso-scale cost model for solar-thermal power generation systems.
Key results from this study indicate that a R123 organic Rankine cycle is the most cost-effective cycle implementation for operating conditions in which the maximum temperature is limited below 240C. For temperatures greater than 240C and less than 375C, the toluene and ethylbenzne organic Rankine cycles outperform the other cycles. The highest first law efficiency of 28% of the Kalina cycle exceeds all other cycles at temperatures between 375C and 500C. However, when considering cycle cost and overall feasibility, including thermodynamic and thermoeconomic performance, the Maloney-Robertson and Kalina cycles have poor performance on a cost-to-efficiency basis.
|
18 |
Investigation of production systems for a building integrated photovoltaic thermal productBura, Sunil Kumar. January 2007 (has links)
Thesis (M.E. Mechanical Engineering)--University of Waikato, 2007. / Title from PDF cover (viewed May 6, 2008) Includes bibliographical references (p. 102-108)
|
19 |
Optimization of a SEGS solar field for cost effective power outputBialobrzeski, Robert Wetherill January 2007 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Sheldon Jeter; Committee Member: Sam Shelton; Committee Member: Srinivas Garimella
|
20 |
Forecasting solar cycle 24 using neural networks /Uwamahoro, Jean January 2008 (has links)
Thesis (Ph.D. (Physics & Electronics)) - Rhodes University, 2009 / A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science
|
Page generated in 0.0653 seconds