• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lead-Free Solder Ball Interface Reaction Study

Chung, Tzu-hao 24 July 2007 (has links)
none
2

The joint study of BGA solder ball on the OSP type substrate

Lin, Kuan-ting 17 August 2009 (has links)
none
3

Microstructure Analysis of Sn-Ag-Cu Solder Ball in BGA Package

Chang, Kuei-Min 21 June 2005 (has links)
none
4

Structural response of package-level solder balls due to high-speed impact test

Chen, Shih-cyuan 18 July 2006 (has links)
In this thesis, the response of solder balls under high-speed impact was investigated. Five solder compositions, such as Sn/4.0Ag/0.5Cu,Sn/3.5Ag/0.75Cu,Sn/1.0Ag/1.0Cu, Sn/3.0Ag/0.5Cu and Sn/2.6Ag/0.6Cu with two pad surface finishes and ball impact test system were used to implement four kinds of experiments including different impact speeds, different hammers, different reflow times and different aging time in room temperature after reflow. From experiments, the variations of solder strength and mechanical properties were received and discussed. At the same time, failure modes and variations of solder structure after reflow were observed by using SEM and X-ray EDS. The experimental results show that maximum impact force on solder joints increases with the increasing of impact speed when it reaches a critical value. The impact force of Sn/2.6Ag/0.6Cu with Ni/Au pad finish is the maximum among all the solder compositions at varied impact speeds. Maximum impact force on solder joints will decrease with the increasing of mass of hammer. The strength of solder ball were reduced significantly after reflow, however, it makes no difference for solder strength to reflow twice. It was found that maximum impact force and impact energy of solder joints didn¡¦t change a lot, but the ductility and stiffness of them varied unstably under the condition of room temperature for seven days after reflow.
5

Study of Integration Technology for Stacking Package

Cheng, Ming-Hsiang 04 February 2007 (has links)
The thesis is mainly focused on the investigation of optimal process operation, which is appropriate for new-type stacking package product to achieve the assembly products of two or more packages. By melting solder balls to form the stacking package products, the eventual goals of lightness, thinness and smallness will be accomplished. To increase and stabilize the production yield of stacking package products, different flux, different temperature setting with reflow oven, and different flux dipping method were used. With Taguchi design of experiment, the solder balls combined situations under varied conditions were observed. The best process character of new-type integration assembly products was achieved. The experimental results and mass production data prove that different flux type and temperature setting with reflow oven won¡¦t influence the solder balls connection between two package products. Only the flux dipping method will directly affect solder balls connection between two package products. The abnormal phenomenon is the so-called cold joint in assembly plants. With innovation, silicon gel head is used as a flux adhesive way to achieve the goal of flux transferred. This method can be used in integration process of new-type stacking package products. That will certainly assure that every solder ball on each package product can be helpful for adhesion of flux. The experiments proved that the yield rate of solder balls connection of two package products is 100% after the stacking package products through reflow oven. This proves that using flux with silicon gel head on new-type stacking package products is the best way of process operation. The innovation of this new process has been granted a patent by the Patent office, ROC. Although this is a simple invention, it will bring profit to ASE Co. as well and ensure the leadership of new-type stacking package products in related industries. Keywords: Stack¡BSolder Ball¡BCold Joint¡BSilicon Pad
6

Transient Analysis on Structural Responses of Solder Joints under High-Speed Impact

Wang, Chang-chin 19 July 2007 (has links)
The purpose of thesis is to study the transient analysis of structural responses of solder joints under high-Speed impact. By using the experimental and simulation analysis. The experimental work can be divided into six parts, such as different impact speeds, different solder¡¦s components, different pad finishing, different UBM and Runner, and different thickness of PBO. From experiments, the variations of solder joint strength and mechanical properties were received and discussed and the failure mode. The empirical results show that maximum impact force on solder joints decreases as the impact speed increasing. The solder joint strength becomes stronger with the solder adopting elements of Ni and Co. The strength of solder ball was reduced significantly after a reflow. The intermetallic compound strength reduces with solder ball adopting high content of Ag. In impact test, the resistance of UBM of TiAl is better than that of TiAlTi. The runner adopted with the element Pd can improve the IMC reliablility to reduce Mode I failure. However, the PBO thickness has little influence on IMC strength. From the numerical results, in the consideration of strain rate on solder joint the mechanical properties of solder joint could be effectively investigated. According to the different IMC strength there will produce three failure modes of solder ball and the impact force becomes higher as the IMC strength setting higher. If the lower yield stress is considered in lower IMC strength, the impact force is not the highest of all, but the time duration is the highest of all.
7

The Study of Cu-Wire Bonding and BGA Solder Ball Joining

Huang, Kuan-lin 27 July 2009 (has links)
none
8

Thermo-Mechanical Reliability of Micro-Interconnects in Three-Dimensional Integrated Circuits: Modeling and Simulation

Rodriguez, Omar 01 May 2010 (has links)
Three-dimensional integrated circuits (3D ICs) have been designed with the purpose of achieving higher communication speed by reducing the interconnect length between integrated circuits, and integrating heterogeneous functions into one single package, among other advantages. As a growing, new technology, researchers are still studying the different parameters that impact the overall lifetime of such packages in order to ensure the customer receives reliable end products. This study focused on the effect of four design parameters on the lifetime of the interconnects and, in particular, solder balls and through-silicon vias (TSVs). These parameters included TSV pitch, TSV diameter, underfill stiffness and underfill thickness. A three-dimensional finite element model of a 3D IC package was built in ANSYS to analyze the effect of these parameters under thermo-mechanical cyclic loading. The stresses and damage in the interconnects of the IC were evaluated using Coffin-Manson and the energy partitioning fatigue damage models. A three-level Taguchi design of experiment method was utilized to evaluate the effect of each parameter. Minitab software was used to assess the main effects of the selected design parameters. Locations of maximum stresses and possible damage initiation were discussed, and recommendations were made to the manufacturer for package optimization. Due to the very small scale of the interconnects, conducting mechanical tests and measuring strains in small microscopic scale material is very complicated and challenging; therefore, it is very difficult to validate finite element and analytical analysis of stress and strain in microelectronic devices. At the next step of this work, a new device and method were proposed to facilitate testing and strain measurements of material at microscopic scale. This new micro-electromechanical system (MEMS) consisted of two piezoelectric members that were constrained by a rigid frame and that sandwiched the test material. These two piezoelectric members act as load cell and strain measurement sensors. As the voltage is applied to the first member, it induces a force to the specimen and deforms it, which in turn deforms the second piezoelectric member. The second piezoelectric member induces an output voltage that is proportional to its deformation. Therefore, the strain and stresses in the test material can be determined by knowing the mechanical characteristics of the piezoelectric members. Advantages of the proposed system include ease of use, particularly at microscopic scale, adaptability to measure the strain of different materials, and flexibility to measure the modulus of elasticity for an unknown material. An analytical analysis of the device and method was presented, and the finite element simulation of the device was accomplished. The results were compared and discussed. An inelastic specimen was also analyzed and sensitivity of the device to detecting nonlinear behavior was evaluated. A characteristic curve was developed for the specific geometry and piezoelectric material.
9

Standard Methods of Evaluation of Solder Ball and Flux

Chang, Chia-Wei 29 January 2007 (has links)
Abstract This thesis is mainly aimed to the study the basic physical properties of different flux, and the combination with semiconductor packaging of 0.6mm Sn96.5/Ag3.0/Cu0.5 (SAC305) big solder ball, and 0.3mm Sn98.5/Ag1.0/Cu0.5 (SAC105) small solder ball. Big solder ball was proceeded with shear stress test, pull ball test, and tray drop test. However small solder ball was proceeded with shear stress test, pull ball test, zone shear solder balls test and board level drop test. After experiments, samples of different flux, the effect of solder strength and mechanical properties were received and discussed. And failure modes were observed by high-power microscope, SEM and OM. The experimental result shows that the flux doesn¡¦t have direct relationship with the point of welding strong and weak, the point of welding strong and weak is determined by the metal¡¦s characteristics. However, the less of residual flux is, the higher the solder balls shearing force as well as pulling force are. As for the more of residual more of flux, after aged processing, some solder balls have the phenomenon of missing from the IMC layer. And the difference of the residual flux will affect the various failure modes of zone shear solder balls. From board level drop test, the majority of failure modes is pad peeling at the corner of test board side for all test flux, and the remaining failure modes exhibit solder fractured and IMC layer broken. Therefore, the judgement of the residual flux is a very important key factor for the semiconductor packaging. It doesn¡¦t have the direct correlation with the reliability of final products. Keywords: Lead Free, Solder Ball, Flux, Semiconductor Packaging, Tests.
10

A Study of Solder Ball Deformation for Ball Grid Array Package Under Burn-In Stress

Hsiao, Chia-ping 16 January 2007 (has links)
ABSTRACT This thesis gathered the actual Burn-In (BI) data from one of the leading cooperation in the semiconductor industry, and analyzed the major factors¡¦ impact on BGA package solder ball deformation. The Taguchi Method was used for these analyses, and the commercial statistic software MiniTab14 was widely used on this thesis. The solder ball stress was analized by using the commercial FEM software Ansys 8.1. Some electrical characters (such as device power) can be only observed from Burn-In process, but not static acceleration tests. These effects were fully discussed in this thesis. The analyses got the result that the smaller solder ball pitch/solder ball diameter causes the more serious solder ball deformation under the specific socket vendor precondition. Burn-In time are also a significant factor for solder deformation. Basically the longer BI time cause the more serious solder deformation. The device power effect is not significant within the power sampling range of this thesis.

Page generated in 0.0713 seconds