Spelling suggestions: "subject:"solidsolution"" "subject:"solid:solution""
91 |
Synthèse, caractérisations structurales et propriétés d'oxydes multifonctionnels A2B2O7 (A = lanthanide; B = Ti, Zr) sous forme massive et en couches minces / Synthesis, structural characterizations and properties of multifunctional oxides A2B2O7 (A = lanthanide ; B = Ti, Zr) in bulk and in thin filmsBayart, Alexandre 21 November 2014 (has links)
Cette thèse porte sur la synthèse et la caractérisation de nouvelles phases d’oxydes multifonctionnels de la famille Ln2B2O7 avec Ln = lanthanide, B = Ti ; Zr. Ces oxydes présentent de nombreuses propriétés : photocatalytiques, ferroélectriques, piézoélectriques, de luminescence... Sous forme massive, des solutions solides (La1-xLnx)2Ti2O7 avec Ln = Pr à Lu et La2(Ti1-xZrx)2O7 ont été synthétisées par réaction solide-solide. L’étude portant sur la substitution du site Ln a permis de déterminer les limites de stabilité de la phase pérovskite en feuillets en fonction de la nature du lanthanide. Des analyses menées par spectrométrie Raman, ainsi que par spectrofluorimétrie ont mis en évidence des propriétés de luminescence dans les solutions solides (La1-xEux)2Ti2O7 et (La1-xTbx)2Ti2O7, suggérant ainsi la possibilité d’utiliser ces composés pour la fabrication de nouveaux systèmes luminophores. Des couches minces de Ln2Ti2O7 ont été élaborées par ablation laser pulsé, puis caractérisées par diffraction de rayons X haute résolution et par microscopie électronique à transmission haute résolution. Les nouvelles limites de stabilité des films minces à structure pérovskite en feuillets ont pu être déterminées dans le cas de dépôts réalisés sur des substrats de SrTiO3 et LaAlO3 orientés (100) et (110). Le caractère piézoélectrique/ferroélectrique des films de Ln2Ti2O7 cristallisés dans la phase α monoclinique a été confirmé à l’échelle locale par la microscopie à force piézoélectrique. Enfin, nous avons montré que la croissance épitaxiale d’un film de La2Zr2O7 déposé sur SrTiO3-(110) pouvait conduire à l'existence de la ferroélectricité en raison d'une structure pyrochlore géométriquement frustrée et la perte de la symétrie cubique. Ces résultats prometteurs font de ces composés Ln2B2O7 des candidats de premier choix en vue du développement de nouvelles phases oxydes multifonctionnelles. De plus, l’absence de plomb au sein de ces structures, ainsi que leur formidable résistance à la température et à l’irradiation ouvrent des perspectives intéressantes quant à l’utilisation de ces matériaux dans les équipements électroniques et en milieux extrêmes. / This thesis focuses on the synthesis and characterization of new multifunctional Ln2B2O7 oxides phases with Ln = lanthanide, B = Ti, Zr. These oxides possess many properties, including photocatalysis, ferroelectricity, piezoelectricity and luminescence. In bulk form, solid solutions of (La1-xLnx)2Ti2O7 with Ln = Pr to Lu and La2(Ti1-xZrx)2O7 were synthesis by solid-solid reaction. Study on the Ln site substitution highlighted the limits of stability of the layered perovskite depending on the nature of the lanthanide. Analysis carried out by Raman spectroscopy and spectrofluorimetry also permit the detection of luminescence in (La1-xEux)2Ti2O7 and (La1-xTbx)2Ti2O7 solid solutions, suggesting the possibility to use such compounds for fabrication of new phosphor systemes. Ln2Ti2O7 thin films were grown by pulsed laser deposition, and characterized by high resolution X-rays diffraction and high resolution transmission electron microscopy. The new limits of stability of films with layeredperovskite structure have been determined in the case of samples grown on (100)- and (110)-oriented SrTiO3 and LaAlO3 substrates. The piezoelectric/ferroelectrique properties of Ln2Ti2O7 thin films crystallized in the monoclinic α phase were confirmed at the local level by piezoelectric force microscopy measurements. Finally, we have shown the the epitaxial growth of La2Zr2O7 films deposited on (110)-oriented SrTiO3 substrate can induce ferroelectricity for geometrically frustrated pyrochlore structure with the loss of cubic symmetry. These interesting results make Ln2B2O7 compounds promising candidates for the development of new multifunctional oxides. Moreover, the absence of lead in these structures and their resistance to the temperature and irradiation open interesting perspectives for the use of such materials in electronic equipments and in extreme environments.
|
92 |
The Influence of Alloying Additions on Diffusion and Strengthening of MagnesiumKammerer, Catherine 01 January 2015 (has links)
Magnesium alloys are being developed as advanced materials for structural applications where reduced weight is a primary motivator. Alloying can enhance the properties of magnesium without significantly affecting its density. Essential to alloy development, inclusive of processing parameters, is knowledge of thermodynamic, kinetic, and mechanical behavior of the alloy and its constituents. Appreciable progress has been made through conventional development processes, but to accelerate development of suitable wrought Mg alloys, an integrated Materials Genomic approach must be taken where thermodynamics and diffusion kinetic parameters form the basis of alloy design, process development, and properties-driven applications. The objective of this research effort is twofold: first, to codify the relationship between diffusion behavior, crystal structure, and mechanical properties; second, to provide fundamental data for the purpose of wrought Mg alloy development. Together, the principal deliverable of this work is an advanced understanding of Mg systems. To that end, the objective is accomplished through an aggregate of studies. The solid-to-solid diffusion bonding technique is used to fabricate combinatorial samples of Mg-Al-Zn ternary and Mg-Al, Mg-Zn, Mg-Y, Mg-Gd, and Mg-Nd binary systems. The combinatorial samples are subjected to structural and compositional characterization via Scanning Electron Microscopy with X-ray Energy Dispersive Spectroscopy, Electron Probe Microanalysis, and analytical Transmission Electron Microscopy. Interdiffusion in binary Mg systems is determined by Sauer-Freise and Boltzmann-Matano methods. Kirkaldy*s extension of the Boltzmann-Matano method, on the basis of Onsager*s formalism, is employed to quantify the main- and cross-interdiffusion coefficients in ternary Mg solid solutions. Impurity diffusion coefficients are determined by way of the Hall method. The intermetallic compounds and solid solutions formed during diffusion bonding of the combinatorial samples are subjected to nanoindentation tests, and the nominal and compositionally dependent mechanical properties are extracted by the Oliver-Pharr method. In addition to bolstering the scantly available experimental data and first-principles computations, this work delivers several original contributions to the state of Mg alloy knowledge. The influence of Zn concentration on Al impurity diffusion in binary Mg(Zn) solid solution is quantified to impact both the pre-exponential factor and activation energy. The main- and cross-interdiffusion coefficients in the ternary Mg solid solution of Mg-Al-Zn are reported wherein the interdiffusion of Zn is shown to strongly influence the interdiffusion of Mg and Al. A critical examination of rare earth element additions to Mg is reported, and a new phase in thermodynamic equilibrium with Mg-solid solution is identified in the Mg-Gd binary system. It is also demonstrated that Mg atoms move faster than Y atoms. For the first time the mechanical properties of intermetallic compounds in several binary Mg systems are quantified in terms of hardness and elastic modulus, and the influence of solute concentration on solid solution strengthening in binary Mg alloys is reported. The most significant and efficient solid solution strengthening is achieved by alloying Mg with Gd. The Mg-Nd and Mg-Gd intermetallic compounds exhibited better room temperature creep resistance than intermetallic compounds of Mg-Al. The correlation between the concentration dependence of mechanical properties and atomic diffusion is deliberated in terms of electronic nature of the atomic structure.
|
93 |
<b>Two-dimensional Transition Metal Carbides as Precursor Materials for Applications in Ultra-high Temperature Ceramics</b>Srinivasa Kartik Nemani (20135232) 19 November 2024 (has links)
<p dir="ltr">In this dissertation, we investigate the potential of two-dimensional (2D) transition metal carbides, known as MXenes, as precursor materials for the development of ultra-high temperature ceramics (UHTCs), with a focus on Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene. MXenes are distinguished by their unique combination of 2D structure, high surface area, and chemically active basal planes, making them ideal candidates for a wide range of high-performance applications. This study focuses on the phase transformation, grain growth, surface texturing, and electrocatalytic behavior of Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene films when subjected to high-temperature annealing, along with their role as sintering aids in UHTCs.</p><p dir="ltr">We present the transformation of 2D Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> flakes into ordered vacancy carbides of three-dimensional (3D) TiC<sub>y</sub> phases at temperatures above 1000°C. Using X-ray diffraction and ex-situ annealing (up to 2000°C in a tube furnace and spark plasma sintering), we investigate the resulting nano-lamellar and micron-sized cubic grain morphologies. Single-flake Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> films retain a lamellar morphology after annealing, while multi-layer clay-like MXene transforms into irregular cubic grains.</p><p dir="ltr">In addition to investigating the structural evolution, we examine the influence of cationic intercalation on grain growth and texture. Specifically, Ca²⁺ ions lead to highly templated growth along the (111) crystal plane, significantly altering carbon diffusion and metal atom migration during annealing. We show that this preferential growth influences properties with hydrogen evolution reactions (HER) as an example functionality. We observe that with Ca²⁺-intercalated Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> films, exhibit an overpotential of 594 mV and a current density of -13 mA/cm² due to increased surface area and dominant texturing.</p><p dir="ltr">Additionally, we investigate the use of MXenes in self-assembly with ceramic materials such as ZrB<sub>2</sub>, facilitated by optimizing zeta potentials. MXenes, with their functionalized hydrophilic surfaces and negative zeta potentials, serve as sintering aids and reinforcements in UHTC composites. The introduction of Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> to ZrB<sub>2</sub> enables improved sinterability, achieving 96% relative density compared to 89% for pure ZrB<sub>2</sub>. Furthermore, the addition of MXenes leads to a core-shell microstructure with (Zr,Ti)B<sub>2</sub> solid-solution interfaces, enhanced mechanical properties such as a 36% increase in hardness, and reductions in oxygen content. These findings establish MXenes as promising materials for the development of advanced UHTCs, suitable for extreme environments.</p><p dir="ltr">Through a combination of experimental techniques, and theoretical estimations, and advanced characterizations, this dissertation provides critical insights into the role of MXenes in both phase transformation and mechanical reinforcement, thereby laying the foundation for future studies and opening new avenues for applications of MXene derived carbides and the design of high-performance UHTCs.</p>
|
94 |
Solid-Solution Strengthening and Suzuki Segregation in Co- and Ni-based AlloysDongsheng Wen (12463488) 29 April 2022 (has links)
<p>Co and Ni are two major elements in high temperature structural alloys that include superalloys for turbine engines and hard metals for cutting tools. The recent development of complex concentrated alloys (CCAs), loosely defined as alloys without a single principal element (e.g. CoNiFeMn), offers additional opportunities in designing new alloys through extensive composition and structure modifications. Within CCAs and Co- and Ni-based superalloys, solid-solution strengthening and stacking fault energy engineering are two of the most important strengthening mechanisms. While studied for decades, the potency and quantitative materials properties of these mechanisms remain elusive. </p>
<p><br></p>
<p>Solid-solution strengthening originates from stress field interactions between dislocations and solute of various species in the alloy. These stress fields can be engineered by composition modification in CCAs, and therefore a wide range of alloys with promising mechanical strength may be designed. This thesis initially reports on experimental and computational validation of newly developed theories for solid-solution strengthening in 3d transition metal (MnFeCoNi) alloys. The strengthening effects of Al, Ti, V, Cr, Cu and Mo as alloying elements are quantified by coupling the Labusch-type strengthening model and experimental measurements. With large atomic misfits with the base alloy, Al, Ti, Mo, and Cr present strong strengthening effects comparable to other Cantor alloys. </p>
<p> </p>
<p>Stacking fault energy engineering can enable novel deformation mechanisms and exceptional strength in face-centered cubic (FCC) materials such as austenitic TRIP/TWIP steels and CoNi-based superalloys exhibiting local phase transformation strengthening via Suzuki segregation. We employed first-principles calculations to investigate the Suzuki segregation and stacking fault energy of the FCC Co-Ni binary alloys at finite temperatures and concentrations. We quantitatively predicted the Co segregation in the innermost plane of the intrinsic stacking fault (ISF). We further quantified the decrease of stacking fault energy due to segregation. </p>
<p><br></p>
<p>We further investigated the driving force of segregation and the origin of the segregation behaviors of 3d, 4d and 5d elements in the Co- and Ni-alloys. Using first-principles calculations, we calculated the ground-state solute-ISF interaction energies and revealed the trends across the periodic table. We discussed the relationships between the interaction energies and the local lattice distortions, charge density redistribution, density of states and local magnetization of the solutes. </p>
<p><br></p>
<p>Finally, this thesis reports on new methodologies to accelerate first-principles calculations utilizing active learning techniques, such as Bayesian optimization, to efficiently search for the ground-state energy line of the system with limited computational resources. Based on the expected improvement method, new acquisition strategies were developed and will be compared and presented. </p>
|
Page generated in 0.0708 seconds