1 |
Thermal Management and Solidification Characteristics in High Performance Aluminum CastingSharma, Satyam January 2016 (has links)
Weight reduction in automobiles is amongst the most economical ways of reducing greenhouse gas emissions and increasing fuel efficiency. The recently invented ablation casting process is a novel technique of producing high performance light weight parts which meet this objective. In this technique a water jet demolds the water soluble sand mold and subsequently impinges upon the solidifying metal, thereby producing high cooling rates in the casting which in turn leads to microstructural refinement and higher mechanical properties.
The objective of this study was to develop a comprehensive understanding of the effect of various parameters involved in the casting of a thin walled part using the HiPerMag casting process for the wrought aluminum alloy AA 7050.
The study is divided into three major parts that deal with the composition of the sand binder system, optimization of the sand mold thickness, various aspects of the water jet parameters and the desired microstructural parameters which will result in a defect free part.
In first phase of the study, sand mold properties such as the green and dry strengths of the water soluble sand binder system used in the study were tested to ensure that they meet the molding requirements. An average green strength of 160 kPa and an average dry strength of 3825 kPa were found for the water soluble sand binder system. These values were similar to those reported in the literature for clay bonded sands and were sufficient to make molds for casting in the current study.
Secondly, a heat transfer model was developed to find a minimum mold thickness required to design a mold for the HiPerMag casting process such that the liquid metal remained sufficiently insulated before being quenched. Based on the model, for a mold with a cope thickness of 12.9 cm, the heat flux losses to the surroundings were reduced by up to 90 % versus a case where a thinner mold was used.
In addition, an analytical solution was derived for the mold thickness problem from which it was found that at a distance of 10 cm from the mold cavity there was a negligible increase in temperature of the sand at that location at large times.
Further, the minimum mold thickness was determined based on the temperature profile in the sand mold during the HiPerMag casting process. This study showed that a thin mold of about 2 cm thickness was sufficient to provide insulation to the hot metal during the HiPerMag casting process.
Thirdly, it was found that, based on cooling curve data and microstructural analysis, that a jet spacing of 15.3 cm and a time delay of 7.4 s between successive jet activations starting from the farthest jet (located near the edge of the casting), was necessary to obtain a single solidification front throughout the casting. This also ensured that grain size variation in the casting was less than 10 μm for having uniform mechanical properties.
Also, it was found for a thin walled casting, the amount of solid present in the solidifying casting at the time of water jet impingement had a negligible effect on the movement of the solidification interface.
Finally, the effect of jet momentum on surface defects was examined. It was determined that the maximum jet momentum resulting in no surface defects at temperatures close to the liquidus for Al AA 6061 alloy was approximately 2 kg.m/s. / Thesis / Master of Applied Science (MASc)
|
2 |
Mesure et modélisation dynamique de la couche de gelée dans un réacteur métallurgiqueBertrand, Clément January 2014 (has links)
Résumé : La mesure des profils transitoires et de la vitesse de solidification sont deux données importantes pour le contrôle de procédés industriels impliquant un changement de phase. Dans le cas de l’électrolyse de l’aluminium, ce processus de solidification assure la protection du système et influe sur la performance énergétique du procédé de fabrication. Malheureusement, ces données se révèlent, dans la plupart des cas, difficilement accessibles. Ce travail de thèse porte sur le développement de nouveaux outils permettant l’étude et la caractérisation de la solidification de matériaux à changement de phase et à haute température. L’objectif est de développer un système de mesure du front de solidification de matériaux à changement de phase non destructif et ne perturbant pas le milieu de mesure, tout en assurant une précision et une réponse suffisamment rapide pour exploiter de nouvelles stratégies de contrôle dans les cuves d’électrolyse. Ce travail couple une étude expérimentale fondamentale de la solidification de la cryolithe avec une modélisation numérique de phénomène de changement de phase solide-liquide dans des conditions proches du fonctionnement de cuves d’électrolyse. // Abstract : Measurement of transient solidification fronts and of solidification rate are two important
data for controlling industrial processes involving a solid-liquid phase change. In the case
of aluminium electrolysis, this solidification process protects the system and affects the
energy performance of the manufacturing process. Unfortunately, these data are not easy
to obtain in most cases. This thesis focuses on the development of new tools for the study
and on the solidification characterization of phase change materials at high temperature.
The goal is to develop a nondestructive solidification front measurement system for phase
change materials without disturbing the measurement medium, while ensuring accuracy
and a fast enough response time to exploit new control strategies in electrolysis cells.
This work couples a fundamental experimental study of the cryolite solidification with
numerical modeling of solid-liquid phase change phenomenon under conditions close to
those during normal operation of electrolytic cells.
|
3 |
Mesure et modlisation dynamique de la couche de gele dans un racteur mtallurgiqueBertrand, Clment January 2014 (has links)
Rsum : La mesure des profils transitoires et de la vitesse de solidification sont deux donnes importantes pour le contrle de procds industriels impliquant un changement de phase. Dans le cas de llectrolyse de laluminium, ce processus de solidification assure la protection du systme et influe sur la performance nergtique du procd de fabrication. Malheureusement, ces donnes se rvlent, dans la plupart des cas, difficilement accessibles. Ce travail de thse porte sur le dveloppement de nouveaux outils permettant ltude et la caractrisation de la solidification de matriaux changement de phase et haute temprature. Lobjectif est de dvelopper un systme de mesure du front de solidification de matriaux changement de phase non destructif et ne perturbant pas le milieu de mesure, tout en assurant une prcision et une rponse suffisamment rapide pour exploiter de nouvelles stratgies de contrle dans les cuves dlectrolyse. Ce travail couple une tude exprimentale fondamentale de la solidification de la cryolithe avec une modlisation numrique de phnomne de changement de phase solide-liquide dans des conditions proches du fonctionnement de cuves dlectrolyse. // Abstract : Measurement of transient solidification fronts and of solidification rate are two important
data for controlling industrial processes involving a solid-liquid phase change. In the case
of aluminium electrolysis, this solidification process protects the system and affects the
energy performance of the manufacturing process. Unfortunately, these data are not easy
to obtain in most cases. This thesis focuses on the development of new tools for the study
and on the solidification characterization of phase change materials at high temperature.
The goal is to develop a nondestructive solidification front measurement system for phase
change materials without disturbing the measurement medium, while ensuring accuracy
and a fast enough response time to exploit new control strategies in electrolysis cells.
This work couples a fundamental experimental study of the cryolite solidification with
numerical modeling of solid-liquid phase change phenomenon under conditions close to
those during normal operation of electrolytic cells.
|
Page generated in 0.1571 seconds