Spelling suggestions: "subject:"validly mounted resonator""
1 |
Fabrication of Piezoelectric and Reflecting Layers for Solidly Mounted Resonator (SMR)Wei, Ching-Liang 21 July 2005 (has links)
In this study, AlN films are deposited using reactive RF magnetron sputter on various bottom metals, such as Mo, Al and Pt. The orientation of piezoelectric AlN thin films on different bottom electrode materials are investigated. Moreover, the acoustic Bragg reflectors deposited by DC magnetron sputter are composed of alternating layers of high and low acoustic impedance materials. To improve the performance of the reflectors, rapid thermal anneal and deposition process control over roughness of the thin film are also investigated.
The resonance characteristics are improved obviously by deposition process control over thin films. The roughness control is the key factor of good frequency responses of SMR. In addition, the more layer of the reflectors the better the frequency response we obtained.
The frequency responses of SMR are slightly improved by rapid thermal annealing procsess. Although defects in the thin films would be eliminated, nevertheless the thin film roughness became worse after annealing. This phenomenon would limit the improvement of frequency responses.
|
2 |
Synthesis and Bulk Acoustic Wave Properties of the Dual Mode Solidly Mounted ResonatorsChung, Chung-jen 25 December 2008 (has links)
The solidly mounted resonator (SMR) is constructed of a Bragg reflector and a piezoelectric layer AlN. In order to obtain an appropriate SMR for the high frequency communication applications and high sensitivity bio-sensor applications, the Bragg reflector, the AlN, and the loading effect have been investigated thoroughly.
The thesis presents the influences of surface roughness of the Bragg reflector and materials¡¦ selection on the resonance characteristics of an SMR. Three combinations of thin films, AlN/Al, Mo/Ti, and Mo/SiO2, are adopted. Originally, an AlN/Al multi-layer is used as the Bragg reflector. The poor surface roughness of this Bragg reflector results in a poor SMR frequency response. To improve the surface roughness of Bragg reflectors, a Mo/Ti multi-layer with a similar coefficient of thermal expansion is adopted. By controlling deposition parameters, the surface roughness of the Bragg reflector is improved. Finally, a material combination of Mo/SiO2 with high acoustic impedance ratio of 4.7 is adopted. Better resonance characteristics of SMR are obtained. The experimental results show a distinct resonance phenomenon around 2.5 GHz and excellent noise restraint.
Afterwards, a ¼£f mode SMR is experimentally realized. The selection of high and low acoustic impedance for the first layer beneath piezoelectric layer results in the ¼£f mode and ½ £f mode resonance configurations, respectively. The coupling coefficient Keff2 of 6.9% is obtained, which is in agreement with the theoretical analysis.
Following, the theoretical analysis upon the dual mode frequency-shift was characterized, and a modified formula was carried out. The c-axis tilted angle of AlN was altered as well as the various mass loading on the SMR. Based on the experimental results, the dual resonance frequencies showed a nonlinear decreasing trend with a linear increase of the mass loading. Furthermore, the ratio of the longitudinal resonant frequency to the shear resonant frequency remained at a range around 1.76 despite the various c-axis tilted angles of AlN and gradual mass loading on the SMR. The electromechanical coupling coefficient, keff2, of the shear resonance rose with the increase of the c-axis tilted angle of AlN. However, the longitudinal resonance fades away with the AlN c-axis tilted angle, and the quality factor of the longitudinal resonance decreases.
Finally, the dual mode resonances are improved by tilting the off-center substrates toward the sputtering source and successfully enhance the longitudinal resonance while preserve the shear resonance at the same time. Not only the shear resonance for the liquid-based sensing application, but also an outstanding longitudinal resonance could be obtained. The practicability of the dual-mode resonator is extended for the applications of high frequency wireless communication and high sensitivity bio-chemical sensors.
|
3 |
Design, fabrication and testing of an acoustic resonator-based biosensor for the detection of cancer biomarkersDickherber, Anthony 10 November 2008 (has links)
The objective of this thesis research is to develop microelectronic acoustic technology towards biosensor applications. The development of a simple and robust resonator that employs simple microelectronic fabrication techniques for its construction could provide the foundation for a cost-effective sensor platform. Subsequent development of an appropriate surface chemistry treatment would functionalize the resonator as a biosensor. Implementation of this design in an array configuration allows for the development of ligand microarrays, which subsequently allows for multi-ligand recognition signatures as well as testing redundancy. The applications for such a tool extend to a myriad of applications, but the focus of this research is to develop this technology towards an early cancer detection capability.
Specifically, I develop a solidly-mounted resonator with thin-film ZnO as my active piezoelectric layer. These resonators undergo an extensive development process to arrive at a final device design and are fully characterized throughout by X-ray diffraction and scattering analysis. Employing silane chemistry, these resonators are functionalized as immunosensors by covalently binding antibodies to the surface of the device. The quality of the surface chemistry is fully assessed using water contact angle, atomic force microscopy and confocal laser scanning microscopy. Functionalized biosensors are then used to quantify the concentration of known proteins marker in both a purified medium
and a physiologically-relevant medium.
|
4 |
A fast, scalable acoustic resonator-based biosensor array system for simultaneous detection of multiple biomarkersMunir, Farasat 17 August 2012 (has links)
This thesis is about the design of a biosensor system for detection of multiple cancer biomarkers. Accurate diagnosis and prognosis of cancer requires early detection. Equally important, though, is the measurement of biomarker-velocity and detection of multiple biomarkers. Early detection requires highly sensitive biosensors capable of detection at very low concentrations of target molecules. Biomarker-velocity can be measured by monitoring concentration of target molecule over a period of time. This requires a system which is very easy to use, fast, flexible, inexpensive and portable, thus enabling its ubiquitous presence at the point of care. For detection of multiplexed biomarkers, biosensors which easily lend to array configuration are required. Conventional techniques do not fulfill either all or some aspects of the requirements listed above.
In this work, we present the design of a biosensor system, keeping in view the desired features described above, to achieve the ultimate goal of enabling ubiquitous presence of biosensor at the point of care. We focus on acoustic transducer based biosensors. The two fundamental components of design in an acoustic biosensor are the design of an acoustic transducer and the design of a novel electrical interface for the transducer. For transducer design, we introduce and present the design of a single structure, GHz range, multi-mode acoustic resonator. We present this as a suitable transducer for liquid phase biosensors, which is the preferred medium for sensing of cancer biomarkers. We explore the underlying physics and do experimental and theoretical characterization of this device. The transducer needs to be functionalized with a chemically sensitive layer which performs the molecular recognition of cancer biomarkers. We present the experimental exploration of a reversible and oriented immobilization based Histidine-Ni(2+) interaction which used NTA as the chelator for anchoring onto the device. Then we discuss the microfluidic design to enable liquid phase operation. We used SU-8 polymer barriers for liquid containment and addressed the challenges of making it compatible with ZnO based devices.
An electrical interface is needed to excite and extract the sensor response. We have presented here a novel method to measure and track a resonator's response and extract its characteristic parameters. This method measures the wideband frequency response of the resonator with a much simpler setup as compared to conventional methods. We have proposed and demonstrated the use of a white noise signal as a viable signal for broadband excitation of resonator-based sensing platforms. We have also established, shown through simulation and prototype measurements, the feasibility of the proposed method. The accuracy and speed of the system can be further greatly improved by FFT-based digital implementation of the spectral analysis system. We have presented an example hardware implementation of FFT-based signal analyzer, and have discussed the hardware resources required for actual implementation in a chip form. Lastly we discuss the measurement protocol and sensor results for head and neck cancer and prostate cancer biomarkers. These results demonstrate the usability of the proposed sensor system for detection of cancer biomarkers.
|
Page generated in 0.0652 seconds