• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 22
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 21
  • 16
  • 14
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Etude d’une enzyme de déubiquitination comme cible thérapeutique dans le Médulloblastome avec une activation de la voie Sonic Hedgehog / A Deubiquitinating Enzyme as a Therapeutic Target in Sonic Hedgehog Medulloblastoma

Cigna, Sara Maria 14 September 2016 (has links)
Le médulloblastome (MB) représente la tumeur maligne la plus fréquente du système nerveux chez l'enfant. Dans le laboratoire nous nous intéressons au sous-groupe avec une activation de la voie Sonic Hedgehog (SHH). Dans ce sous-groupe, l’induction de la dégradation du facteur de transcription Atoh1 par le protéasome empêche la prolifération des cellules de médulloblastome in vivo, ce qui fait d’Atoh1 une cible thérapeutique potentielle dans le cadre du MB SHH. Dans ce contexte, en utilisant une approche de purification d’Atoh1 suivie d’analyse des complexes protéiques par MudPit (Multidimensional Protein identification technology), nous avons découvert un nouveau partenaire d’Atoh1, une enzyme faisant partie du système ubiquitine-protéasome (UPS). Il s’agit d’une déubiquitinylase capable de cliver les chaines d’ubiquitine attachées sur ses substrats et ainsi d’inhiber la dégradation induite via le protéasome. Au cours de ma thèse j’ai tout d’abord confirmé l’interaction physique et fonctionnelle entre Atoh1 et l’enzyme identifié par MudPit. De plus, dans le but d’approfondir le rôle de cet enzyme dans la maintenance tumorale, nous avons validé que son inactivation in vivo permet (i) d’induire la dégradation d’Atoh1 et (ii) de bloquer la croissance des tumeurs. Parallèlement, nos résultats montrent que son inhibition pharmacologique déclenche la dégradation d’Atoh1, suivie d’un arrêt de la prolifération des cellules cancéreuses in vitro, et la regression tumorale in vivo.En conclusion, l’ensemble de ce travail a permis d’identifier un nouveau mécanisme moléculaire qui pourrait permettre de manipuler l’expression d’Atoh1 dans un but thérapeutique dans le cadre du MB SHH. / Medulloblastoma (MB) is the most common malignant tumor of the nervous system in children. Among the four molecular subgroups of MB, we focus on the one characterized by the activation of the Sonic Hedgehog pathway (SHH). In this subgroup, the degradation of the transcription factor Atoh1 through the proteasome prevents proliferation of medulloblastoma cells in vivo, which makes Atoh1 a potential therapeutic target in the SHH MB subgroup. In this context, using an Atoh1 purification approach followed by Mudpit (Multidimensional Protein Identification Technology) analysis, we discovered a new Atoh1 partner belonging to the ubiquitin-proteasome system (UPS). This protein is a deubiquitinating enzyme (DUB) that cleaves the polyubiquitin chains from its substrates and thus inhibits their degradation via the proteasome.During my PhD, I first confirmed the physical and functional interaction between Atoh1 and the DUB enzyme. In addition, in order to investigate its role in SHH MB, we validated that its knockdown induces Atoh1 degradation and tumor growth arrest in vivo. In parallel, our results show that its pharmacological inhibition triggers Atoh1 degradation in vitro, followed by an inhibition of MB proliferation, and regulates negatively tumor progression in vivo.Altogether, this present work allowed the identification of a new molecular mechanism that defines the transcription factor Atoh1 as new therapeutic strategy to treat SHH MB patients.
42

Structural maintenance and chemosensory function of human airway motile cilia.

Shah, Alok Shirish 01 May 2009 (has links)
Cilia are finger-like projections that extend from the surface of most cells. These microtubule-based structures serve important mechanical or sensory functions. Motile cilia have been implicated in fluid movement whereas the non-motile primary cilia have been shown to play a role in sensory signal transduction. There exists a dichotomy in the field that primary cilia have only sensory function and motile cilia only have mechanical function. The central question of this thesis project is "what are the structural and functional components of airway motile cilia and are these cilia sensory?" In Chapter 2, the role of Bardet-Biedl Syndrome (BBS) proteins in maintaining the structure and function of airway motile cilia is examined. We found that BBS proteins localize to the cilium and to ciliary-related structures in human airway epithelia. Using mutant mice we found that BBS proteins play an essential role in motile cilia structure and the loss of BBS proteins results in reduced ciliary beat. These proteins have previously been shown to play a role in primary cilia structure and function, and our studies indicate a novel function for BBS proteins. Chapter 3 examines the sensory role of motile cilia. Our data show that bitter taste receptors and components of the bitter taste signal transduction pathway localize to the motile cilia or to the ciliated cells. Ciliated cells also show an increase in intracellular calcium in response to bitter compounds, accompanied by a corresponding increase in cilia beat. The increase in intracellular calcium originates at the ciliated cells and is propagated to adjacent cells. Chapter 4 delves into the possibility that every motile ciliated cell also contains a single, primary cilium. Using immunostaining and Smoothened as a marker for primary cilia, we found that every group of motile cilia contains a single Smoothened-positive cilium. Furthermore, downstream components of the Sonic Hedgehog pathway are also present in ciliated cells. Chapter 6 is a summary chapter including possible explanations for observed outcomes and plans for future experiments. Our results indicate that the divide between primary and motile cilia may not be as great as has been previously thought.
43

Discovery of novel downstream target genes regulated by the hedgehog pathway

Ingram, Wendy Jill Unknown Date (has links)
Sonic hedgehog (Shh) is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. When cells receive the Shh signal a cascade of effects begin which in turn regulate downstream target genes. The genes controlled by Sonic hedgehog provide messages instructing cells how to differentiate or when to divide. Disruption of the hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. Patched, the receptor for Shh, acts as a tumour suppressor and is mutated in naevoid basal cell carcinoma syndrome (NBCCS). NBCCS patients display a susceptibility to tumour formation, particularly for basal cell carcinoma (BCC). The discovery of Patched mutations in sporadic BCCs and other tumour types further highlights the importance of this pathway to human cancer. The identification of genes regulated by hedgehog is crucial for understanding how disruption of this pathway leads to neoplastic transformation. It is assumed that the abnormal expression of such genes plays a large role in directing cells to divide at inappropriate times. Only a small number of genes controlled by Shh have been described in vertebrate tissues. In the work presented in this thesis a Sonic hedgehog responsive embryonic mouse cell line, C3H/10T1/2, was used as a model system for hedgehog target gene discovery. Known downstream target genes were profiled to determine their induction kinetics, building up a body of knowledge on the response to Shh for this cell type. During this work, it was discovered that C3H/10T1/2 cells do not become fully competent to respond to Shh stimulation until the cells reach a critical density, a factor that had to be taken into account when determining timepoints of interest for further investigation. Several techniques were employed to identify genes that show expression changes between Shh stimulated and control cells. In one of these techniques, RNA from cell cultures activated with Shh was used to interrogate cDNA microarrays, and this provided many insights into the downstream transcriptional consequences of hedgehog stimulation. Microarrays consist of thousands of spots of DNA of known sequence gridded onto glass slides. Experiments using this technology allow the expression level of thousands of genes to be measured simultaneously. Independent stimulation methods combined with northern blotting were used to investigate individual genes of interest, allowing genuine targets to be confirmed and false positives eliminated. This resulted in the identification of eleven target genes. Seven of these are induced by Sonic hedgehog (Thrombomodulin (Thbd), Glucocorticoid induced leucine zipper (Gilz), Brain factor 2 (Bf2), Nuclear receptor subfamily 4, group A, member 1 (Nr4a1), Insulin-like growth factor 2 (Igf2), Peripheral myelin protein 22 (Pmp22), Lim and SH3 Protein 1 (Lasp1)), and four are repressed (Secreted frizzled related proteins 1 and 2 (Sfrp1 and Sfrp2), Macrophage inflammatory protein-1 gamma (Mip-1?), and Anti-mullerian hormone (Amh)). The majority of these represent novel downstream genes not previously reported as targets of Shh. The new target genes have a diverse range of functions, and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery. The identification of novel Sonic hedgehog responsive genes provides candidates whose abnormal expression may be decisive in initiating tumour formation and future studies will investigate their role in development and disease. It is expected that such findings will provide vital clues to the aetiology of various human cancers, and that an understanding of their roles may ultimately provide greater opportunities in the future design of anti-tumour therapies.
44

Etude des effets des rayonnements ionisants sur la niche hématopoïétique et traitement du syndrome aigu d'irradiation par thérapie génique chez le macaque irradié à forte dose

Garrigou, Philipppe 07 September 2011 (has links) (PDF)
La niche des cellules souches hématopoïétiques représente un compartiment complexe et radiosensible. Sa protection est nécessaire pour la restauration de l'hématopoïèse faisant suite à la myélosuppression due à l'exposition aux rayonnements ionisants. Nous avons dans un premier temps étudié l'effet des RI sur les progéniteurs endothéliaux et mésenchymateux de la niche par une étude de radiosensiblilité et une étude d'évaluation de la mort cellulaire. Nous avons proposé par la suite une stratégie innovante de thérapie génique basée sur la sécrétion locale et à court terme du morphogène Sonic hedgehog visant à favoriser la réparation de niche vasculaire et de stimuler les cellules souches hématopoïétiques et les cellules progénitrices résiduelles. Nous avons étudié la réponse hématopoïétique des singes irradiés à 8-Gy gamma après une seule injection intra-osseuse de cellules souches mésenchymateuses xénogéniques, multipotentes et d'origine adipocytaire transfectées avec un plasmide pIRES2-eGFP codant la protéine Shh. La durée de thrombocytopénie et celle de neutropénie ont été significativement réduites chez les animaux greffés et les clonogènes sont normalisés à partir du 42e jour. Les aires sous la courbe des numération des plaquettes et des neutrophiles entre 0 et 30 jours ont été significativement plus élevée chez les animaux traités que chez les témoins. La greffe d'explants de MatrigelTM colonisés ou non avec des ASC chez des souris immunodéprimées a démontré une activité pro-angiogénique notable des ASC transfectées avec le plasmide Shh . Le suivi à long terme (180 à 300 jours) a confirmé une reconstitution durable dans les quatre singes greffés. Globalement cette étude suggère que la greffe de cellules souches multipotentes Shh-peut représenter une nouvelle stratégie pour la prise en charge des dommages radio-induits de la niche.
45

The Role of Sonic Hedgehog in Outflow Tract Development

Dyer, Laura Ann January 2009 (has links)
<p>The two major contributing populations to the outflow tract of the heart are the secondary heart field and the cardiac neural crest. These two populations are responsible for providing the myocardium that supports the outflow tract valves, the smooth muscle that surrounds these valves and the outflow vessels themselves, and the septum that divides the primitive, single outflow tract into an aorta and pulmonary trunk. Because the morphogenesis of this region is so complex, its development is regulated by many different signaling pathways. One of these pathways is the Sonic hedgehog pathway. This thesis tests the hypothesis that Sonic hedgehog induces secondary heart field proliferation, which is necessary for normal outflow tract development. To address this hypothesis, I took advantage of small chemical antagonists and agonists to determine how too little or too much hedgehog signaling would affect the secondary heart field, both in in vitro explants and in vivo. I have determined that Sonic hedgehog signaling maintains proliferation in a subset of secondary heart field cells. This proliferation is essential for generating enough myocardium and smooth muscle and also for the cardiac neural crest to septate the outflow tract into two equal-sized vessels. Up-regulating hedgehog signaling induces proliferation, which is quickly down-regulated, showing that the embryo exhibits a great deal of plasticity. Together, these studies have shown that Sonic hedgehog promotes proliferation in a subset of the secondary heart field and that the level of proliferation must be tightly regulated in order to form a normal outflow tract.</p> / Dissertation
46

The Role of FGF Signaling During Granule Neuron Precursor Development and Tumorigenesis

Emmenegger, Brian Andrew January 2010 (has links)
<p>Development requires a delicate balance of proliferation and differentiation. Too little proliferation can result in dysfunctional tissues, while prolonged or heightened proliferation can result in tumor formation. This is clearly seen with the granule neuron precursors (GNPs) of the cerebellum. Too little proliferation of these cells during development results in ataxia, whereas too much proliferation results in the cerebellar tumor medulloblastoma. While these cells are known to proliferate in response to Shh, it is not clear what controls the differentiation of these cells in vivo.</p><p> Previous work from our lab has identified basic fibroblast growth factor (bFGF) as a candidate differentiation factor for these cells. In this thesis, I characterize some of the cellular and molecular mechanisms involved in FGF-mediated inhibition (FMI) of Shh-induced GNP proliferation. In addition, I employ FGFR knockouts and a bFGF gain-of-function mouse to determine whether FGF signaling is necessary and/or sufficient for differentiation of GNPs during cerebellar development. Finally, the question of whether bFGF can be effective as a therapeutic agent for in vivo tumor treatment is tested in a transplant model.</p><p> These experiments indicate that FGF signaling is neither necessary nor sufficient for GNP differentiation during cerebellar development. However, transplanted tumors are potently inhibited by bFGF treatment. Furthermore, FMI is shown to occur around the level of Gli2 processing in the Shh pathway, implying that such a treatment has promise to be widely effective in treatment of Shh-dependent medulloblastomas.</p> / Dissertation
47

Central role for Sonic hedgehog-triggered pericytes in hindbrain choroid plexus development

Yang, Peter 25 February 2014 (has links)
The choroid plexus is an organ within each brain ventricle comprised of elaborate folds of epithelium (CPe) and vasculature. It performs numerous functions essential for brain development and health, including secretion of cerebrospinal fluid (CSF) and acting as the blood-CSF barrier. Functionality requires: (1) that CPe and vasculature develop in register and in close proximity, so that the CPe ensheaths the vasculature at a high surface area to volume ratio, which permits efficient CSF secretion; and (2) that CPe barrier integrity is sustained throughout choroid plexus expansion. Genetic experiments in mouse embryos have identified a central role for Sonic hedgehog (Shh) in coordinating these developmental challenges. Specifically, Shh is secreted by differentiated CPe and drives choroid plexus expansion. In the absence of Shh, a hypoplastic choroid plexus forms, which is deficient in CPe, vasculature, and villous folds. Two choroid plexus cell populations respond to Shh: (1) rhombic lip-resident CPe progenitor cells and (2) vascular pericytes. Here, I present evidence that canonical Shh signaling to CPe progenitors alone is insufficient to fully drive their proliferation at normal rates. Rather, Shh-triggered pericytes appear to secondarily boost CPe progenitor cell proliferation, in addition to acting in vascular development. Shh-triggered pericytes also appear necessary for formation of the characteristic folds of the choroid plexus. Thus, pericytes coordinate the expansion of choroid plexus epithelium and vasculature. Notch signaling was also explored and was found to inhibit the differentiation of CPe progenitors, maintaining them in a proliferative state. Notch activation in CPe progenitors leads to invaginated tubules from the overproliferating CPe progenitor domain, without associated vascular growth or villous folds. Folding morphogenesis may thus be regulated by vascular components such as pericytes, and require that vascular growth match CPe growth. To identify Shh-induced pericyte signaling programs that might underlie these developmental processes, expression profiling was performed on dsRed-labeled pericytes isolated from Shh-deficient versus wild-type choroid plexuses. Candidate genes, including several involved in lipid metabolism, were identified. Collectively, this work points to pericytes as central in orchestrating the coordinated elaboration of multiple choroid plexus cell types, producing the complex tissue architecture required for efficient CSF production.
48

Discovery of bioactive lipids and lipid pathways in cell death and disease

Zhang, Tejia 04 June 2015 (has links)
Apoptosis is an intricately regulated cellular process required for the health and homeostasis of living systems. The mitochondrial apoptotic pathway depends on the BCL-2 family of pro- and anti-apoptotic members whose interactions regulate cell fate. BAX and BAK are key pro-apoptotic proteins required for mitochondrial permeabilization during apoptosis. While the mitochondrial death program relies heavily on its protein components, evidences support equally crucial roles for lipids and lipid metabolism in promoting or hindering apoptosis at the mitochondria. To gain insight into the interplay between lipids and BCL-2 proteins we used a liquid chromatography (LC)-mass spectrometry (MS)-based comparative lipidomics approach to uncover lipid changes in the absence of BAX and/or BAK. Our analysis revealed novel functions for BAX and BAK in inflammation and ceramide metabolism. A targeted LC-MS workflow was also developed for characterization of a novel lipid class involved in type 2 diabetes. Targeted LC-MS revealed altered oxysterol metabolism following perturbation of the Sonic hedgehog pathway. Taken together, our findings demonstrate interesting connections among lipids, cell death and disease. / Chemistry and Chemical Biology
49

La perte de Sonic Hedgehog altère la maturation des cellules caliciformes et de Paneth dans l'intestin murin adulte

Gagné Sansfaçon, Jessica January 2012 (has links)
Les Hedgehogs (Hhs) sont des morphogènes indispensables au développement et à l'homéostasie de l'organisme, notamment dans la formation de l'intestin. La littérature y révèle l'importance d'Indian Hh dans le contrôle de la prolifération, de la différenciation des entérocytes et dans l'attraction des cellules immunitaires. Par contre, sa délétion ne récapitule pas l'inhibition de la voie Hh, soulevant ainsi l'hypothèse que Sonic Hh aurait des rôles complémentaires dans l'intestin. Nous avons donc voulu identifier les implications de Shh dans l'histologie, la prolifération et la différenciation de l'épithélium intestinal chez la souris adulte. Pour ce faire, nous avons utilisé le système de délétion conditionnelle Cre/loxP afin d'abolir l'expression de Shh au niveau de l'épithélium de l'intestin et du côlon, à l'aide du promoteur de la Villine . Des traitements au DSS sur 7 jours ont permis de simuler une colite ulcéreuse (CU) chez les animaux afin d'étudier les maladies inflammatoires intestinales (MII). Aucune anomalie histologique n'a été observée par coloration H&E, mais l'axe crypte-villosité était réduit de 16%. Une immunofluorescence dirigée contre PCNA relie ce résultat avec une réduction de 24% du nombre de cellules prolifératives dans l'iléon. Ensuite, Shh ne serait pas impliqué dans la différenciation des entérocytes et des cellules entéroendocrines, contrairement à Ihh. Par contre, les observations montrent une diminution de l'expression de Klf4 en qPCR et un défaut dans l'ultrastructure des vésicules de sécrétion des cellules caliciformes en microscopie électronique. La production des mucines acides et leur fucosylation sont aussi affectées par coloration. Il en résulte un défaut dans la sécrétion de la bicouche de mucus procurant une défense physique. Ensuite, une diminution de l'expression de Sox9 et de la taille des granules dans les cellules de Paneth est observée en absence de Shh. Une diminution de l'autophagie, associée à un réticulum endoplasmique relâché, semble être à la base de ce phénotype en immunobuvardage. Il en résulte un défaut dans la production des agents antimicrobiens, tels que le lysozyme et les a-défensines, en qPCR, suggérant un possible défaut dans la défense antimicrobienne. Bien que les altérations de la barrière intestinale laissent supposer un rôle dans l'inflammation, les souris expérimentales soumises au traitement DSS suggèrent que Shh ne module pas le développement de la CU mais pourrait avoir un rôle dans les étapes de restitution. Finalement, le niveau d'expression des effecteurs Hhs en qPCR lors des Mn et de la CU chez les souris de type sauvage révèle qu'Ihh et Glil sont fortement réduits dans ces pathologies. Les résultats obtenus démontrent que Shh et Ihh ont des rôles distincts dans l'intestin. Shh semble influencer positivement la prolifération et participe à la différenciation terminale des cellules caliciformes et de Paneth ainsi que dans le processus d'autophagie. Ensemble, les Hhs sont essentiels à l'homéostasie et sont impliqués dans la pathologie des MII.
50

Discovery of novel downstream target genes regulated by the hedgehog pathway

Ingram, Wendy Jill Unknown Date (has links)
Sonic hedgehog (Shh) is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. When cells receive the Shh signal a cascade of effects begin which in turn regulate downstream target genes. The genes controlled by Sonic hedgehog provide messages instructing cells how to differentiate or when to divide. Disruption of the hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. Patched, the receptor for Shh, acts as a tumour suppressor and is mutated in naevoid basal cell carcinoma syndrome (NBCCS). NBCCS patients display a susceptibility to tumour formation, particularly for basal cell carcinoma (BCC). The discovery of Patched mutations in sporadic BCCs and other tumour types further highlights the importance of this pathway to human cancer. The identification of genes regulated by hedgehog is crucial for understanding how disruption of this pathway leads to neoplastic transformation. It is assumed that the abnormal expression of such genes plays a large role in directing cells to divide at inappropriate times. Only a small number of genes controlled by Shh have been described in vertebrate tissues. In the work presented in this thesis a Sonic hedgehog responsive embryonic mouse cell line, C3H/10T1/2, was used as a model system for hedgehog target gene discovery. Known downstream target genes were profiled to determine their induction kinetics, building up a body of knowledge on the response to Shh for this cell type. During this work, it was discovered that C3H/10T1/2 cells do not become fully competent to respond to Shh stimulation until the cells reach a critical density, a factor that had to be taken into account when determining timepoints of interest for further investigation. Several techniques were employed to identify genes that show expression changes between Shh stimulated and control cells. In one of these techniques, RNA from cell cultures activated with Shh was used to interrogate cDNA microarrays, and this provided many insights into the downstream transcriptional consequences of hedgehog stimulation. Microarrays consist of thousands of spots of DNA of known sequence gridded onto glass slides. Experiments using this technology allow the expression level of thousands of genes to be measured simultaneously. Independent stimulation methods combined with northern blotting were used to investigate individual genes of interest, allowing genuine targets to be confirmed and false positives eliminated. This resulted in the identification of eleven target genes. Seven of these are induced by Sonic hedgehog (Thrombomodulin (Thbd), Glucocorticoid induced leucine zipper (Gilz), Brain factor 2 (Bf2), Nuclear receptor subfamily 4, group A, member 1 (Nr4a1), Insulin-like growth factor 2 (Igf2), Peripheral myelin protein 22 (Pmp22), Lim and SH3 Protein 1 (Lasp1)), and four are repressed (Secreted frizzled related proteins 1 and 2 (Sfrp1 and Sfrp2), Macrophage inflammatory protein-1 gamma (Mip-1?), and Anti-mullerian hormone (Amh)). The majority of these represent novel downstream genes not previously reported as targets of Shh. The new target genes have a diverse range of functions, and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery. The identification of novel Sonic hedgehog responsive genes provides candidates whose abnormal expression may be decisive in initiating tumour formation and future studies will investigate their role in development and disease. It is expected that such findings will provide vital clues to the aetiology of various human cancers, and that an understanding of their roles may ultimately provide greater opportunities in the future design of anti-tumour therapies.

Page generated in 0.0549 seconds