• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrasound induced destruction of emerging contaminants

Andaluri, Gangadhar January 2011 (has links)
There are many reports indicating the presence of emerging contaminants such as: estrogen hormones, 1,4-dioxane and perfluoro-octanoic acids in the natural environment. Estrogen hormones are considered important emerging class of contaminants due to their endocrine disrupting effects. These compounds are invariably found in the environment originating mostly from natural sources. Trace concentrations of estrogen hormones (low µg/L concentrations) have been detected in municipal wastewater treatment plants and observed in receiving water bodies. 1,4-Dioxane (C4H8O2) is used as an organic solvent and solvent stabilizer numerous in chemical processes. The United States Environmental Protection Agency (US-EPA) has recognized 1,4-dioxane as a toxic chemical and a possible human carcinogen. 1,4-dioxane has been detected as a contaminant in the natural environment, drinking water supplies, superfund sites, public groundwater sources in the United States, Canada and Japan at concentrations greater than the permissible standards. Perfluorinated chemicals such as perfluoro-octanoic acid (PFOA) and perfluorooctane-sulfonate (PFOS) have been manufactured for use in a variety of industrial and consumer applications. Due to their environmental persistence, PFOAs have been detected in surface waters at a number of locations at concentrations ranging from pg/L to ng/L. Elevated concentrations of PFOAs have been measured in surface and ground waters near specific point sources. Through this project, successful attempts have been made for the destruction of emerging contaminants using ultrasound. This study deals with the optimization of various process parameters for the destruction of estrogen hormones. The influence of process parameters such as power density, reactor geometry, power intensity, ultrasound amplitude, and external mixing was investigated. Artificial neural network (ANN) approach was used to describe the interactions between optimized parameters. The important findings obtained in the present work for the optimized estrogen degradation can help tackle the challenges of scale up such as operational optimization and energy consumption. The effect of process conditions such as pH and presence of oxidizing agents on the ultrasonic destruction of 1,4-dioxane and PFOA was studied. Acidic conditions favored the destruction of both the compounds. The presence of activated sulfate radicals enhanced the reaction rate kinetics. An innovative technology using electric potential and ultrasound for the removal organic contaminants was developed. The existence of organic contaminants in ionic form under certain process conditions has led to the development of this technology. Applying a low electric potential across the probe enhances the mass transfer of the contaminants into effective reaction zone, thereby enhancing the total destruction. A two-fold increase in the reaction rates was observed. This study shows ultrasound as an efficient and effective treatment technology for the destruction of emerging contaminants. / Civil Engineering
2

Interfacial effects on aqueous sonochemistry and sonoluminescence

Sostaric, Joe Zeljko Unknown Date (has links) (PDF)
The dissolution of quantum sized CdS and MnO2 particles in water was conducted using 20 kHz ultrasound. CdS particles were found to dissolve chemically via an oxidation process while MnO2 particles dissolved via a reductive process. It was found that the dissolution of the colloids could be controlled via the addition of surface active chemicals to solution and by varying the saturation gas type. In the presence of Na2S or propan-2-ol and argon gas, the dissolution of CdS was inhibited, whereas the addition of alcohols (methanol, ethanol, propan-2-ol, butan-1-ol and pentan-1-ol) to the MnO2 system led to an increase in the amount of dissolution for a given time of sonication. This increase in dissolution was found to be dependent on the ability of the surface active radical scavenger to accumulate around the bubble interface during the cavitation process. Eventually, at higher alcohol concentration there was a plateau or a limiting value reached for the efficiency of colloid dissolution which was common for each alcohol. (For complete abstract open document)
3

Sonochemical Remediation Of Freshwater Sediments Contaminated With Polycyclic Aromatic Hydrocarbons

Pee, Gim-Yang 19 March 2008 (has links)
No description available.
4

Application des techniques d’oxydation avancée pour la dépollution des effluents organiques dans les eaux de rejets industriels : cas des savonneries / Advanced oxidation processes applied to organics micropollutants contained in industrial wastewater : case of soap factories

Dalhatou, Sadou 17 April 2014 (has links)
Dans le cadre de l'élimination de composés réfractaires contenu dans une matrice complexe, les procédés d'oxydation avancée s'avèrent être une technologie de choix. Cette étude est donc consacrée à la sonolyse et à la photolyse de deux xénobiotiques organiques, le naphthol blue black (un colorant hydrophile, noté NBB) et le nonylphénol (un détergent, hydrophobe et volatil, noté NP), seuls ou en compétition. L'efficacité de la technique ultrasonore de haute fréquence (278 kHz) a été testée sur les molécules cibles et leur mélange. La décoloration du NBB est effective après 180 min de traitement et s'accompagne d'une minéralisation de 23% alors que le NP se dégrade après 120 min. L'effet des paramètres a été étudié, tels que la puissance ultrasonore, la concentration du substrat, le pH, les ions inorganiques (bicarbonates et phosphates) et la compétition. Ainsi dans le mélange, la présence du NBB n'a pas d'influence sur la disparition sur NP tandis que la décoloration du NBB est affectée par la présence du NP. Cependant, la présence des ions bicarbonates dans le mélange permet par l'intermédiaire des radicaux carbonates de contrebalancer l'effet inhibiteur du NP. L'utilisation de la photolyse directe a fait l'objet de la deuxième partie de ce travail, ce qui a permis de faire une étude comparative des deux techniques. Il a été montré que la sonochimie, fort de sa capacité à produire abondamment les radicaux HO•, est plus adaptée au traitement des effluents relativement plus concentrés. De plus, la sonochimie permet de mettre en valeur les ions inorganiques, constituants naturels de l'eau pour minimiser l'effet inhibiteur de la matrice. Ensuite, l'efficacité de certains Procédés d'Oxydation Avancée (POA) sur l'élimination des xénobiotiques sus-mentionnés a été testée et les résultats obtenus ont donné lieu à l'ordre suivant : UV < UV/H2O2 < Fe2+/H2O2 < UV/Fe2+/H2O2. / Within the framework of the destruction of refractory organics contained in a complex aqueous matrix, the advanced oxidation processes appear to be a first class technology. So this survey is dedicated to the sonolysis and the photolysis of two organics, namely the naphthol blue black (an acid azo-dye, hydrophilic, noted NBB) and the nonylphenol (a detergent, hydrophobic et volatile, noted NP), single or in competition. High frequency (278 kHz) ultrasound is found to be efficient. NBB decolorization is effective within 180 min and its mineralization reaches 23% while NP is degraded for 120 min. Different parameters were studied, such as ultrasound power, substrate concentration, pH, inorganic ions (bicarbonate and phosphate), and competition. In the NBB/NP mixture, NBB has no influence on the NP degradation whereas NP has a strong effect on the NBB decolorization. Nevertheless, the presence of bicarbonate ions in the mixture reduces the negative effect of NP, thanks to the formation of carbonates radicals. Direct photolysis is the topic of the second part of this study, so as to make a comparison of these two oxidative techniques. It was emphasizes that sonolysis is most adapted for the treatment of more concentrated pollutant, because of the intense production of HO• radicals. Moreover sonolysis is relevant when inorganic ions are present in the mixture, in order to minimize the competition between organics. Then the efficiency of different AOP was tested for the two target pollutants; results can be organized according the following: UV < UV/H2O2 < Fe2+/H2O2 < UV/Fe2+/H2O2.
5

Fundamental Mechanistic Studies on the Ultrasonic Treatment of Problematic Water Pollutants and Toxins

Cui, Danni 23 October 2018 (has links)
Problematic organic pollutants in industrial and drinking water sources are a leading cause of water scarcity. Among the advanced oxidation processes, sonolytic degradation has received considerable attention because it combines oxidation processes initiated by reactive oxidant species and a pyrolysis processes associated with the high temperatures produced during cavitation. The degradation of the semi-volatile compound, MCHM, was rapid and followed pseudo-first order kinetics. The Freundlich kinetic model for heterogeneous systems was successfully applied to describe the non-uniform distribution of MCHM at the gas-liquid interface during ultrasonic treatment. Two primary products were confirmed by GC-MS. Computational studies were also applied to assist in a better understanding of the conformational effects and the pyrolytic pathways. The first-generation antihistamine, diphenhydramine (DPH), was also readily degraded by ultrasound. The heterogeneous process was best fit to a Langmuir-Hinshelwood kinetic model, which indicated a uniform partitioning at the gas-liquid interface. The degradation of DPH was achieved primarily via the addition reaction with hydroxyl radicals to the aromatic rings. Computational studies supported the observed products and the proposed reaction pathways for the pyrolytic and oxidation degradation pathways. Ultrasound was shown to be a rapid and effective method to remediate cetirizine (CET), a second-generation antihistamine. Addition of different hydroxyl radical scavengers into the solution prior to treatment as the competition studies indicated that CET reacted with hydroxyl radicals at the gas-liquid interface and the bulk solution. When the solution was saturated by O2, CET degraded the most rapidly. Degradation products were confirmed by LC-MS analyses. Treatment of the emerging problematic perfluorinated alkyl substance, “GenX” with steady state gamma-radiation under various conditions did not lead to significant degradation. However, “GenX” does react with eaq- at near diffusion-controlled rate, k = 5×1010 M-1·s-1. Titanium dioxide photocatalysis did not lead to appreciable degradation of “GenX” under a variety of conditions even in the presence of oxalic acid or ethanol as the valence band hole quencher. Sonolysis was a promising method and led to the effective mineralization of “GenX” under argon saturated conditions. A detailed computational study of the pyrolytic degradation pathways was carried out using density function in Gaussian 09.
6

Terapeutické využití ultrazvuku u pacientů s cerebrovaskulárním onemocněním. / Therapeutic use of ultrasound in patients with cerebrovascular diseases.

Kuliha, Martin January 2018 (has links)
Background: Sonolysis is an important factor in therapeutic use of ultrasound in patients with cerebrovascular diseases, it is ultrasound induced lysis of thrombus or embolus. The aim of this work was to asses safety and efficacy of therapeutic ultrasound effect (sonolysis) in acute stroke patients and in patients undergoing carotid artery intervention. First partial aim of this work was to confirm the safety and efficacy of endovascular sonolysis by using the EkoSonic Endovascular System in subjects with acute ischemic stroke. Second partial aim of this work was to test the clinical efficacy of sonolysis for reducing the risk of incidence of new brain ischaemic lesions detected on brain magnetic resonance imaging in patients undergoing elective CEA or CAS for severe internal carotid stenosis. In addition, we assessed the effects of sonolysis on cognitive function, morbidity, and mortality at 30 days post-surgery. Methods: Patients with acute ischemic stroke and occlusion of the middle cerebral artery or basilar artery were enrolled consecutively to the prospective study tested safety and efficacy of endovascular sonolysis using the EkoSonic Endovascular System (EKOS) in patients with acute stroke. The control group (44 MCA and 12 BA occlusions) was selected from historical controls. EkoSonic...
7

Redukce rizika tichých a symptomatických mozkových infarktů pomocí sonolýzy při koronární angioplastice a stentingu / Sonolysis in Risk Reduction of Symptomatic and Silent Brain Infarctions during Coronary Angioplasty and Stenting

Viszlayová, Daša January 2020 (has links)
Background: Cerebral complications of coronary catheterizations are transient ischemic attack (TIA) and stroke. Silent stroke (SCI) does not cause acute neurological dysfunction. It might cause many disorders including dementia. Sonolysis is therapeutic method. Sonolysis should be the method for reducing the risk of symptomatic and asymptomatic brain ischemic lesions in patients undergoing elective coronary angioplasty or stenting. Aims: To analyse patients with cardiac disease indicated for elective coronary catheterization: 1) Assess the incidence of acute/subacute SCI on brain magnetic resonance (MR) imaging; 2) Investigate factors influencing the frequency and type of microembolic signals (MES) detected using transcranial Doppler (TCD) in patients undergoing elective coronary intervention, and to correlate the frequency and type of MES with detection of new brain ischemic lesions using MR. Examine changes in cognitive function at 30 days post procedure in relation to pretreatment scores; 3) Test the clinical efficacy and safety of perioperative sonolysis in patients undergoing elective coronary catheterization. Methods: 1) 144 patients were enrolled to the study. Brain MR was performed before cardiac intervention. The presence of acute and subacute SCI was evaluated, SCI volume was measured and risk...

Page generated in 0.0374 seconds