• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 13
  • 12
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 141
  • 141
  • 27
  • 21
  • 20
  • 18
  • 17
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Extensao da faixa de velocidades mensuraveis do velocimetro Doppler ultra-sonico pulsatil

NOGUEIRA, GESSE E.C. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:38:39Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:05:15Z (GMT). No. of bitstreams: 1 06042.pdf: 9369626 bytes, checksum: 37950a2f878d6535f671de4a025da71c (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
122

Acoustic scattering from sand dollars (Dendraster Excentricus) : modeling as high aspect ratio oblate objects and comparison to experiment

Dietzen, Gregory C January 2008 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references (p. 145-149). / Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low grazing angles. Among the effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor. Sand dollars (Dendraster excentricus) occur commonly in the ocean and have been shown to be significant scatters of sound. In order to understand more fully the scattering mechanisms of these organisms, the scattering from individual sand dollars was studied using several methods. Using an approximation to the Helmholtz-Kirchhoff integral, the Kirchhoff method gives an analytic integral expression to the backscattering from an object. This integral was first solved analytically for a disk and a spherical cap, two high aspect ratio oblate shapes which simplify the shape of an individual sand dollar. A method for solving the Kirchhoff integral numerically was then developed. An exact three dimensional model of a sand dollar test was created from computed tomography scans. The Kirchhoff integral was then solved numerically for this model of the sand dollar. The finite element method, a numerical technique for approximating the solutions to partial differential equations and integral equations, was used to model the scattering from an individual sand dollar as well. COMSOL Multiphysics was used for the implementation of the finite element method. Modeling results were compared with published laboratory experimental data from the free field scattering of both an aluminum disk and a sand dollar. Insight on the scattering mechanisms of individual sand dollar, including elastic behavior and diffraction effects, was gained from these comparisons. / by Gregory C. Dietzen. / S.M.
123

Landmine detection with a standoff acoustic/laser technique

Doherty, John Houston January 2008 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references (p. 54-56). / Landmines and mine-like traps are effective weapons that are difficult to detect and discriminate from a safe distance. The ability to detect landmines in their host environment at a distance and to discriminate them from other objects would be valuable for countering the landmine threat. This paper explores a standoff acoustic/laser technique to discriminate landmines from other forms of man-made objects (clutter) in an urban environment. A novel approach currently under investigation by MIT Lincoln Labs, University of Mississippi, and other groups employs a non-contact acoustic/laser technique to detect landmines from a safe standoff range. This technique uses a sound source to excite vibrations in targets with an acoustic wave. These vibrations are in turn measured remotely with a Laser Doppler Vibrometer (LDV). In this thesis, the vibration responses of landmine variants are measured, analyzed, and compared to those of common urban objects likely to be found on a landmine field or roadside. The Fourier Transform of the vibration of the target as measured by the LDV is used to generate a target vibration spectrum. Target vibration spectra in response to a sound source were experimentally measured for 59 trials, 28 of which were of simulated landmine variants and the remaining trials were of urban clutter objects. Using an algorithm adapted from a methodology for mass spectral analysis, parameters of the target signatures are estimated; then individual target signatures are classified using a Support Vector Machine (SVM) with a training set composed of parameters from the remaining members of the total population. The best results obtained from this methodology had a 71% probability of detection and a 3% false alarm rate corresponding to 20 of 28 of the simulated landmine variants correctly identified and a single clutter object misidentified as a landmine variant. / by John Houston Doherty. / S.M.
124

Sonic Boom Minimization through Vehicle Shape Optimization and Probabilistic Acoustic Propagation

Rallabhandi, Sriram Kishore 18 April 2005 (has links)
Sonic boom annoyance is an important technical showstopper for commercial supersonic aircraft operations. It has been proposed that aircraft can be shaped to alleviate sonic boom. Choosing the right aircraft shape reflecting the design requirements is a fundamental and most important step that is usually over simplified in the conceptual stages of design by resorting to a qualitative selection of a baseline configuration based on historical designs and designers perspective. Final aircraft designs are attempted by minor shape modifications to this baseline configuration. This procedure may not yield large improvements in the objectives, especially when the baseline is chosen without a rigorous analysis procedure. Traditional analyses and implementations tend to have a complex algorithmic flow, tight coupling between tools used and computational limitations. Some of these shortcomings are overcome in this study and a diverse mix of tools is seamlessly integrated to provide a simple, yet powerful and automatic procedure for sonic boom minimization. A shape optimization procedure for supersonic aircraft design using better geometry generation and improved analysis tools has been successfully demonstrated. The geometry engine provides dynamic reconfiguration and efficient manipulation of various components to yield unstructured watertight geometries. The architecture supports an assimilation of different components and allows configuration changes to be made quickly and efficiently because changes are localized to each component. It also enables an automatic way to combine linear and non-linear analyses tools. It has been shown in this study that varying atmospheric conditions could have a huge impact on the sonic boom annoyance metrics and a quick way of obtaining probability estimates of relevant metrics was demonstrated. The well-accepted theoretical sonic boom minimization equations are generalized to a new form and the relevant equations are derived to yield increased flexibility in aircraft design process. Optimum aircraft shapes are obtained in the conceptual design stages weighing in various conflicting objectives. The unique shape optimization procedure in conjunction with parallel genetic algorithms improves the computational time of the analysis and allows quick exploration of the vast design space. The salient features of the final designs are explained. Future research recommendations are made.
125

Acoustical wave propagator technique for structural dynamics

Peng, Shuzhi January 2005 (has links)
[Truncated abstract] This thesis presents three different methods to investigate flexural wave propagation and scattering, power flow and transmission efficiencies, and dynamic stress concentration and fatigue failures in structural dynamics. The first method is based on the acoustical wave propagator (AWP) technique, which is the main part described in this thesis. Through the numerical implementation of the AWP, the complete information of the vibrating structure can be obtained including displacement, velocity, acceleration, bending moments, strain and stresses. The AWP technique has been applied to systems consisting of a one-dimensional stepped beam, a two-dimensional thin plate, a thin plate with a sharp change of section, a heterogeneous plate with multiple cylindrical patches, and a Mindlin?s plate with a reinforced rib. For this Mindlin?s plate structure, through the comparison of the results obtained by Mindlin?s thick plate theory and Kirchhoff?s classical thin plate theory, the difference of theoretical predicted results is investigated. As part of these investigations, reflection and transmission coefficients, power flow and transmission efficiencies in a onedimensional stepped beam, and power flow in a two-dimensional circular plate structure, are studied. In particular, this technique has been successfully extended to investigate wave propagation and scattering, and dynamic stress concentration at discontinuities. Potential applications are fatigue failure prediction and damage detection in complex structures. The second method is based on experimental techniques to investigate the structural response under impact loads, which consist of the waveform measuring technique in the time domain by using the WAVEVIEW software, and steady-state measurements by using the Polytec Laser Scanning Vibrometer (PLSV) in the frequency domain. The waveform measuring technique is introduced to obtain the waveform at different locations in the time domain. These experimental results can be used to verify the validity of predicted results obtained by the AWP technique. Furthermore, distributions of dynamic strain and stress in both near-field (close to discontinuities) and far-field regions are investigated for the study of the effects of the discontinuities on reflection and transmission coefficients in a one-dimensional stepped beam structure. Experimental results in the time domain can be easily transferred into those in the frequency domain by the fast Fourier transformation, and compared with those obtained by other researchers. This PLSV technique provides an accurate and efficient tool to investigate mode shape and power flow in some coupled structures, such as a ribbed plate. Through the finite differencing technique, autospectral and spatial of dynamic strain can be obtained. The third method considered uses the travelling wave solution method to solve reflection and transmission coefficients in a one-dimensional stepped beam structure in the time domain. In particular, analytical exact solutions of reflection and transmission coefficients under the given initial-value problem are derived. These analytical solutions together with experimental results can be used to compare with those obtained by the AWP technique.
126

Comparação entre sistemas de comunicação digital operando com monoportadora e multiportadoras/OFDM sob canal com multipercursos e efeito Doppler / Comparison between digital communication systems operating with single-carrier and multicarrier/ofdm under channel with multipath and doppler effect

Fonseca Neto, João 29 November 2013 (has links)
In digital mobile communication systems, in which signals are transmitted via radio, multipath distortions manifest themselves as a linear intersymbol interference, ISI, because of multiple copies of the same signal arriving at the receiver with different time delays. To combat the effects of ISI, one of the tools used is Orthogonal Frequency-Division Multiplexing, OFDM. OFDM is a modulation technique that employs simultaneously several subcarriers which have been successfully used in both wired communication systems and in radio transmission systems. It has been especially used in the transmission of signals in digital mobile systems with high data rates through a communication channel with multipath, noisy, with severe frequency selective fading, because as one of the most important characteristics of this technique is to have great resistance to ISI and ICI, even in adverse conditions. The objective of this work is to present a comparative study of the behavior of digital communication systems operating with single carrier and multicarrier OFDM in Rayleigh channel, particularly considering the achievements of Doppler shift and multipath. The study is based on simulation, from the perspective of performance, through analysis of bit error rate curves, BER versus Eb=N0. / Em sistemas de comunicação digitais móveis, nos quais sinais são transmitidos via rádio, multipercursos provocam distorções lineares que se manifestam como interferência intersimbólica, ISI (do inglês intersymbol interference), em razão de múltiplas cópias de um mesmo sinal chegarem ao receptor com diferentes atrasos temporais. Para combater os efeitos da ISI, uma das ferramentas utilizadas é a multiplexação por divisão em frequências ortogonais, OFDM (do inglês orthogonal frequency division multiplexing). OFDM é uma técnica de modulação de sinais digitais que emprega simultaneamente diversas subportadoras, atualmente usada com grande sucesso tanto em sistemas de comunicação com fio, quanto em sistemas de transmissão via rádio. Ela tem sido especialmente utilizada na transmissão de sinais em sistemas digitais móveis, com altas taxas de dados, através de canal de comunicação com multipercursos, ruidoso, com severo desvanecimento seletivo em frequências, pois uma das mais importantes características desta técnica é ter grande robustez à ISI e a interferências interportadoras, ICI (do inglês Intercarrier Interference), mesmo em condições adversas. Objetiva-se com este trabalho apresentar um estudo comparativo, baseado em simulação, sob a ótica de desempenho, entre sistemas de comunicação digital operando com monoportadora e com multiportadoras/OFDM, mediante análise de curvas de taxa de erro de bits, BER (do inglês bit error ratio) versus Eb/N0. Nesse estudo serão considerados especialmente efeitos de deslocamento Doppler e de multipercursos empregando modelo de Rayleigh para o canal.
127

Uma proposta de modelagem matem?tica utilizando os conceitos de ondas sonoras / A proposal for mathematical modeling using sound waves concepts

CORR?A, Alecsandro Baltasar 30 August 2016 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-07-28T18:12:15Z No. of bitstreams: 1 2016 - Alecsandro Baltasar Corr?a.pdf: 5030335 bytes, checksum: edc60787122417906b1cdb9b0c067e64 (MD5) / Made available in DSpace on 2017-07-28T18:12:15Z (GMT). No. of bitstreams: 1 2016 - Alecsandro Baltasar Corr?a.pdf: 5030335 bytes, checksum: edc60787122417906b1cdb9b0c067e64 (MD5) Previous issue date: 2016-08-30 / CAPES / The teaching of mathematics, applied in schools, should approach the daily student routine, seek prior knowledge of it on specific issues, as well as develop new methods for learning is actually performed. The survey was conducted with a group of third year of high school in a private school in the city of Rio de Janeiro. Based on the concepts of mathematical modeling, Meaningful Learning and Theory of Multiple Intelligences, and having as a methodological resource educational software GEOGEBRA and two downloaded adapted software PLAY STORE application, seek the objective of this work is to develop a proposed activity that relates the concept of wave sound, physics, with function graph of the sine, mathematics. / O ensino da Matem?tica, aplicado nas escolas, deve aproximar-se do cotidiano di?rio do aluno, buscar o conhecimento pr?vio dele sobre determinados assuntos, assim como desenvolver novos m?todos para que a aprendizagem seja realmente realizada. A pesquisa foi realizada com uma turma do terceiro ano do Ensino M?dio de uma escola particular do munic?pio do Rio de Janeiro. Baseado nos conceitos de Modelagem Matem?tica, Aprendizagem Significativa e Teoria das M?ltiplas Intelig?ncias, e tendo como recurso metodol?gico o software educacional GEOGEBRA e dois softwares adaptados baixados do aplicativo PLAY STORE, buscamos como objetivo deste trabalho desenvolver uma proposta de atividade que relaciona o conceito de onda sonora, da F?sica, com os de gr?fico da fun??o seno, da Matem?tica.
128

Estudo da interação do ultrassom com o tecido cardíaco / Study of the interaction of ultrasound with cardiac tissue

Buiochi, Elaine Belassiano 06 January 2011 (has links)
Orientadores: Eduardo Tavares Costa, Rosana Almada Bassani / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-19T01:08:15Z (GMT). No. of bitstreams: 1 Buiochi_ElaineBelassiano_D.pdf: 9610613 bytes, checksum: 5fefa9e6cf5eaf8478c002d7ab57dc23 (MD5) Previous issue date: 2011 / Resumo: No ultrassom diagnóstico faz-se uso de ondas acústicas de baixa intensidade para investigar os tecidos biológicos, sendo uma técnica não invasiva. Ondas ultrassônicas de maior intensidade podem alterar as características do tecido, e isto é de interesse para aplicações terapêuticas, nas quais a ocorrência de efeitos biológicos é, até certo ponto, desejável. Com relação à cardiologia, o uso do ultrassom diagnóstico é bem estabelecido, enquanto há um potencial inexplorado para aplicações terapêuticas. Soma-se a isso o fato de que os tratamentos disponíveis para as arritmias com estimulação elétrica são limitados por sérias complicações, incluindo infecção sistêmica, choques desnecessários, potencial para pró-arritmia, falha em estimular e, até mesmo, morte. O ultrassom pode se mostrar uma alternativa atraente à estimulação elétrica, porém há poucos estudos sobre a possibilidade de aplicação do ultrassom para o tratamento de arritmias. O objetivo deste estudo foi desenvolver transdutores ultrassônicos de potência e usá-los para investigar conjuntos de parâmetros acústicos capazes de interferir na atividade cardíaca, sem provocar danos teciduais, buscando possíveis aplicações terapêuticas do ultrassom em cardiologia. Os parâmetros acústicos variados foram frequência de ressonância, modo de operação, frequência de repetição de pulso, e pressão de saída. Dois dos sete transdutores construídos se mostraram mais eficientes e, portanto, foram calibrados e usados nos experimentos biológicos. Em experimentos preliminares realizados em corações isolados de ratos Wistar, foi observada geração esporádica de arritmia usando-se o transdutor de 65 kHz, e aumento da frequência espontânea, acompanhada por redução da força de contração do miocárdio, usando-se o transdutor de 1MHz em exposição contínua prolongada. Em estudos in vivo, dez ratos Sprague-Dawley foram anestesiados com isoflurano e expostos a uma seqüência terapêutica de ultrassom, e outros cinco ratos foram usados como grupo controle. A estimulação ultrassônica consistiu de bursts de 1MHz, ciclo de trabalho de 1%, pico de pressão negativa de 3MPa (ISPTA=3W/cm2), e freqüência de repetição de pulso variável e decrescente. O ultrassom transtorácico exerceu efeito cronotrópico negativo, uma vez que foi capaz de reduzir a freqüência cardíaca em 19% logo ao final do período de estimulação. Os efeitos duraram, no mínimo, 15 minutos, sem aparente prejuízo hemodinâmico, que foi monitorado principalmente por meio da medição da fração de ejeção. Trata-se de um fenômeno promissor para o tratamento de taquiarritmias. O regime de exposição utilizado excluiu efeitos térmicos, de forma que o efeito observado foi provavelmente resultante de mecanismos não-térmicos, possivelmente da força da radiação. A variação na frequência de repetição de pulso parece ter sido a chave para a indução do efeito em questão, uma vez que experimentos realizados com frequências de repetição constantes não resultaram em tal efeito / Abstract: Diagnostic ultrasound consists of application of low intensity acoustic waves to noninvasively investigate biological tissues. Higher ultrasound intensities may alter tissue characteristics, and this is of interest for therapeutic applications, when the occurrence of bioeffects is - to a certain extent - desirable. The use of diagnostic ultrasound in Cardiology is well established, although there is an unexplored potential for therapeutic applications. The currently available treatments of arrhythmias by electrical stimulation are limited by serious complications, including systemic infection, inappropriate shock delivery, proarrhythmia, failure to pace and to defibrillate, and even death. Ultrasound can be an interesting alternative for electrical stimulation, but there are only a few studies that investigate the possibility of applying ultrasound for treating arrhythmias. The objective of this study was to develop power ultrasonic transducers to be applied to the investigation of sets of acoustical parameters able to interfere with the cardiac activity without causing tissue damage, thus aiming at potential therapeutic applications of ultrasound in cardiology. The acoustical parameters investigated were resonance frequency, operation mode, pulse repetition frequency, and output pressure. The two most efficient out of the seven transducers built were calibrated and used in biological experiments. In preliminary experiments conducted on isolated hearts from Wistar rats, arrhythmia was esporadically observed at the onset of ultrasound application using the 65kHz transducer, whereas an increase in spontanous beating rate accompanied by a reduction in the force developed by the myocardium occurred during continuous, prolonged exposure using the 1MHz transducer. In in vivo studies, ten Sprague-Dawley rats were anesthetized with isoflurane and exposed to a sequence of therapeutic ultrasound, and other five rats were used as a control group. The ultrasonic stimulation consisted of 1-MHz bursts of 1% duty cycle, 3 MPa peak negative pressure (ISPTA=3W/cm2), and decreasingly variable pulse repetition frequencies. Transthoracic ultrasound application was able to promote a negative chronotropic effect, decreasing the heart rate by 19% just after stimulation ceased. The effect lasted at least 15 minutes, without apparent alteration of pumping function, which was monitored mainly by evaluation of the ejection fraction. This phenomenon is promising for treating tachyarrhythmias. The insonification scheme used in this study excluded thermal effects, so the observed effect seems to have resulted from nonthermal mechanisms, possibly from radiation force. The variation in the pulse repetition frequency seems to be the key element for induction of the described effect, because the latter was not observed for constant repetition rates / Doutorado / Engenharia Biomedica / Doutor em Engenharia Elétrica
129

On the interactions of sound waves and vortices

Legendre, César 08 January 2015 (has links)
The effects of vortices on the propagation of acoustic waves are numerous, from simple convection effects to instabilities in the acoustic phenomena, including absorption,<p>reflection and refraction effects. This work focusses on the effects of mean flow<p>vorticity on the acoustic propagation. First, a theoretical background is presented<p>in chapters 2-5. This part contains: (i) the fluid dynamics and thermodynamics<p>relations; (ii) theories of sound generation by turbulent flows; and (iii) operators taken<p>from scientific literature to take into account the vorticity effects on acoustics. Later,<p>a family of scalar operators based on total enthalpy terms are derived to handle mean<p>vorticity effects of arbitrary flows in acoustics (chapter 6). Furthermore, analytical<p>solutions of Pridmore-Brown’s equation are featured considering exponential boundary<p>layers whose profile depend on the acoustic parameters of the problem (chapter 7).<p>Finally, an extension of Pridmore-Brown’s equation is formulated for predicting the<p>acoustic propagation over a locally-reacting liner in presence of a boundary layer of<p>linear velocity profile superimposed to a constant cross flow (chapter 8).<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
130

Empirical study of acoustic instability in premixed flames: measurements of flame transfer function

Hojatpanah, Roozbeh 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In order to conform to pollutant-control regulations and minimize NOx emissions, modern household boilers and central heating systems are moving toward premixed combustors. These combustors have been successful with regards to emissions along with efficiency. However, their implementation has been associated with acoustical instability problems that could be solved through precise optimization in design rather than trial and error experimentation. This thesis introduces an experimental apparatus, which is designed to investigate the acoustic instability problem at the flame level. The goal is an experimental determination of the flame transfer function and comparison of the experimental data with a theoretical model of the flame. An experimental procedure is designed to diagnose the origins of the combustion instabilities by measurement of the flame transfer function. This research is carried out in three steps. The first step is to understand the acoustic instability problem through study of the theoretical models of the flame transfer function and selection of a model, which is most functional in industrial applications. A xiii measurement technique for the flame transfer function is developed according to the required accuracy in measurements, repeatability, and configurability for a wide range of operating conditions. Subsequently, an experimental apparatus is designed to accommodate the flame transfer function measurement technique. The components of the acoustic system are carefully sized to achieve precise measurement of the system parameters such as flows, pressures, and acoustic responses, and the apparatus is built. The apparatus is operated to measure the flame transfer function at several operating conditions. The experimentally measured flame transfer function is compared with a theoretical model for further verification. The experimental apparatus provides an improved assessment of the acoustic instability problem for industrial applications.

Page generated in 0.0608 seconds