• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 2
  • 2
  • Tagged with
  • 25
  • 25
  • 15
  • 15
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modèle d'Interface Intelligente pour Terminaux de Communication

Sandel, Olivier 07 June 2002 (has links) (PDF)
La présente Thèse en Intelligence Artificielle est basée sur un tout premier concept nommé “Assistant Conversationnel”, lequel est abordé par le fait qu'un utilisateur quelconque souhaitant joindre un interlocuteur doit pouvoir toujours voir sa requête se réaliser, quelque soit le moyen choisi par le terminal et sans que l'utilisateur ait à choisir lui-même le moyen adéquat. Le problème principal à résoudre se définit en conséquence par la modélisation et la conception d'une interface intelligente, personnalisée et praticable par tous les publics sur les terminaux de communication spécialisables accédant à Internet. Nous avons alors créé et développé de nouveaux procédés “intelligents”, chargés entre-autres de rendre les opérations courantes moins fastidieuses sur des applications de messagerie électronique. Pour cela, nous avons établi un état de l'art des divers terminaux de communication disponibles sur le marché mondial, ainsi qu'une classification taxinomique poussée et une nouvelle hiérarchisation efficace des interfaces intelligentes. Puis, nous avons construit un “Modèle Auto-Adaptable d'Utilisateur” sur un apprentissage comportemental, incrémental et évolutif, finalement implémenté en quatre phases : 1. Analyse, représentation et classification des différentes actions réalisées par l'utilisateur. 2. Proposition régulière à l'utilisateur d'effectuer de manière auto-adaptable les actions apprises. 3. Exécution auto-adaptable de ces différentes séquences d'actions répétitives. 4. Simplification auto-adaptable d'éventuelles “erreurs” ou incohérences de manipulation. Ainsi, cette contribution innovante à l'interfaçage homme-machine avancé a permis d'aboutir à la validation complète d'un logiciel intelligent de communication, tout-à-fait autonome et portable, capable d'assister chaque utilisateur, néophyte comme très expérimenté, dans ses divers travaux quotidiens, et ce de manière conviviale et toujours respectueuse de ses préférences.
22

Construction de spécifications formelles abstraites dirigée par les buts

Matoussi, Abderrahman, Matoussi, Abderrahman 09 December 2011 (has links) (PDF)
Avec la plupart des méthodes formelles, un premier modèle peut être raffiné formellement en plusieurs étapes, jusqu'à ce que le raffinement final contienne assez de détails pour une implémentation. Ce premier modèle est généralement construit à partir de la description des besoins obtenue dans la phase d'analyse des exigences. Cette transition de la phase des exigences à la phase de spécification formelle est l'une des étapes les plus délicates dans la chaîne de développement formel. En fait, la construction de ce modèle initial exige un niveau élevé de compétence et beaucoup de pratique, d'autant qu'il n'existe pas de processus bien défini pour aider les concepteurs. Parallèlement à ce problème, il s'avère également que les exigences non-fonctionnelles sont largement marginalisées dans le processus de développement logiciel. Les pratiques industrielles actuelles consistent généralement à spécifier seulement les exigences fonctionnelles durant les premières phases de ce processus et à laisser la prise en compte des exigences non-fonctionnelles au niveau de l'implémentation. Pour surmonter ces problèmes, la thèse vise à définir un couplage entre un modèle d'exigences exprimé en SysML/KAOS et des spécifications formelles abstraites, tout en garantissant une distinction entre les exigences fonctionnelles et non-fonctionnelles dès la phase d'analyse des exigences. Pour cela, la thèse propose tout d'abord deux approches différentes (l'une dédiée au B classique et l'autre à Event-B) dans lesquelles des modèles formels abstraits sont construits progressivement à partir du modèle de buts fonctionnels SysML/KAOS. La thèse se focalise par la suite sur l'approche dédiée à Event-B afin de la compléter et l'enrichir en se servant de deux autres modèles SysML/KAOS qui décrivent les buts non-fonctionnels et leurs impacts sur les buts fonctionnels. Nous présentons différentes manières permettant d'injecter ces buts non-fonctionnels et leurs impacts dans les modèles abstraits Event-B déjà obtenus. Des liens de correspondance entre les buts non-fonctionnels et les différents éléments Event-B sont également établis afin de faciliter la gestion de l'évolution de ces buts. Les différentes approches proposées dans cette thèse ont été appliquées pour la spécification du composant de localisation qui est une partie critique d'un système de transport terrestre. L'approche dédiée à Event-B est implémentée dans l'outil SysKAOS2EventB, permettant ainsi de générer une architecture de raffinement Event-B à partir d'un modèle de buts fonctionnels SysML/KAOS. Cette mise en œuvre s'appuie principalement sur les technologies de transformation de modèles à modèles
23

A Categorical Framework for the Specification and the Verification of Aspect Oriented Systems

Sabas, Arsène 07 1900 (has links)
Un objectif principal du génie logiciel est de pouvoir produire des logiciels complexes, de grande taille et fiables en un temps raisonnable. La technologie orientée objet (OO) a fourni de bons concepts et des techniques de modélisation et de programmation qui ont permis de développer des applications complexes tant dans le monde académique que dans le monde industriel. Cette expérience a cependant permis de découvrir les faiblesses du paradigme objet (par exemples, la dispersion de code et le problème de traçabilité). La programmation orientée aspect (OA) apporte une solution simple aux limitations de la programmation OO, telle que le problème des préoccupations transversales. Ces préoccupations transversales se traduisent par la dispersion du même code dans plusieurs modules du système ou l’emmêlement de plusieurs morceaux de code dans un même module. Cette nouvelle méthode de programmer permet d’implémenter chaque problématique indépendamment des autres, puis de les assembler selon des règles bien définies. La programmation OA promet donc une meilleure productivité, une meilleure réutilisation du code et une meilleure adaptation du code aux changements. Très vite, cette nouvelle façon de faire s’est vue s’étendre sur tout le processus de développement de logiciel en ayant pour but de préserver la modularité et la traçabilité, qui sont deux propriétés importantes des logiciels de bonne qualité. Cependant, la technologie OA présente de nombreux défis. Le raisonnement, la spécification, et la vérification des programmes OA présentent des difficultés d’autant plus que ces programmes évoluent dans le temps. Par conséquent, le raisonnement modulaire de ces programmes est requis sinon ils nécessiteraient d’être réexaminés au complet chaque fois qu’un composant est changé ou ajouté. Il est cependant bien connu dans la littérature que le raisonnement modulaire sur les programmes OA est difficile vu que les aspects appliqués changent souvent le comportement de leurs composantes de base [47]. Ces mêmes difficultés sont présentes au niveau des phases de spécification et de vérification du processus de développement des logiciels. Au meilleur de nos connaissances, la spécification modulaire et la vérification modulaire sont faiblement couvertes et constituent un champ de recherche très intéressant. De même, les interactions entre aspects est un sérieux problème dans la communauté des aspects. Pour faire face à ces problèmes, nous avons choisi d’utiliser la théorie des catégories et les techniques des spécifications algébriques. Pour apporter une solution aux problèmes ci-dessus cités, nous avons utilisé les travaux de Wiels [110] et d’autres contributions telles que celles décrites dans le livre [25]. Nous supposons que le système en développement est déjà décomposé en aspects et classes. La première contribution de notre thèse est l’extension des techniques des spécifications algébriques à la notion d’aspect. Deuxièmement, nous avons défini une logique, LA , qui est utilisée dans le corps des spécifications pour décrire le comportement de ces composantes. La troisième contribution consiste en la définition de l’opérateur de tissage qui correspond à la relation d’interconnexion entre les modules d’aspect et les modules de classe. La quatrième contribution concerne le développement d’un mécanisme de prévention qui permet de prévenir les interactions indésirables dans les systèmes orientés aspect. / One of the main goals of software engineering is to enable the construction of large, complex and reliable software in timely fashion. Object-oriented (OO) technology has provided modeling and programming principles and techniques that allow developing complex software systems both in academic and industrial areas. In return, experience gained in OO system development has allowed discovering some limitations of object technology (e.g., code scattering and poor traceability problems). Aspect Oriented (AO) Technology is a post-object-oriented technology emerged to overcome limitations of Object Oriented (OO) Technology, such as the crosscutting concern problem. Crosscutting concerns are scattered and tangled concerns. Major goals of Aspect Oriented Programming (AOP) include improving modularity, cohesion, and overall software quality. Aspect Oriented Programming results in the evolution of programming activities to fullblown software engineering processes, to preserve modularity and traceability, which are two important properties of high-quality software. Yet, there are also many challenges in AO Technology. Reasoning, specification, and verification of AO programs present unique challenges especially as such programs evolve over time. Consequently, modular reasoning of such programs is highly attractive as it enables tractable evolution, otherwise necessitating that the entire program be reexamined each time a component is changed or is added. It is well known in the literature, however, that modular reasoning about AO programs is difficult due to the fact that the aspects applied often alter the behavior of the base components [47]. The same modular reasoning difficulties are also present in the specification and verification phases of software development process. To the best of our knowledge, AO modular specification and verification is a weakly covered subject and constitutes an interesting open research field. Also, aspect interaction is a major concern in the aspect-oriented community. To deal with these problems, we choose to use category theory and algebraic specification techniques. To achieve the above thesis goals, we use the work of Wiels [110] and other contributions such as the one described in [25]. We assume at the beginning that the system under development is already decomposed into aspect and class components. The first contribution of our thesis is the extension of the algebraic specification technique to the notion of aspect. Secondly, we define a logic, LA that is used in specification bodies to describe the behavior of these components. The third contribution concerns the defini tion of the weaving operator corresponding to the weaving interconnection relationship between aspect modules and class modules. The fourth contribution consists of the design of a prevention policy that is used to prevent or avoid undesirable aspect interactions in aspect-oriented systems.
24

A Categorical Framework for the Specification and the Verification of Aspect Oriented Systems

Sabas, Arsène 07 1900 (has links)
Un objectif principal du génie logiciel est de pouvoir produire des logiciels complexes, de grande taille et fiables en un temps raisonnable. La technologie orientée objet (OO) a fourni de bons concepts et des techniques de modélisation et de programmation qui ont permis de développer des applications complexes tant dans le monde académique que dans le monde industriel. Cette expérience a cependant permis de découvrir les faiblesses du paradigme objet (par exemples, la dispersion de code et le problème de traçabilité). La programmation orientée aspect (OA) apporte une solution simple aux limitations de la programmation OO, telle que le problème des préoccupations transversales. Ces préoccupations transversales se traduisent par la dispersion du même code dans plusieurs modules du système ou l’emmêlement de plusieurs morceaux de code dans un même module. Cette nouvelle méthode de programmer permet d’implémenter chaque problématique indépendamment des autres, puis de les assembler selon des règles bien définies. La programmation OA promet donc une meilleure productivité, une meilleure réutilisation du code et une meilleure adaptation du code aux changements. Très vite, cette nouvelle façon de faire s’est vue s’étendre sur tout le processus de développement de logiciel en ayant pour but de préserver la modularité et la traçabilité, qui sont deux propriétés importantes des logiciels de bonne qualité. Cependant, la technologie OA présente de nombreux défis. Le raisonnement, la spécification, et la vérification des programmes OA présentent des difficultés d’autant plus que ces programmes évoluent dans le temps. Par conséquent, le raisonnement modulaire de ces programmes est requis sinon ils nécessiteraient d’être réexaminés au complet chaque fois qu’un composant est changé ou ajouté. Il est cependant bien connu dans la littérature que le raisonnement modulaire sur les programmes OA est difficile vu que les aspects appliqués changent souvent le comportement de leurs composantes de base [47]. Ces mêmes difficultés sont présentes au niveau des phases de spécification et de vérification du processus de développement des logiciels. Au meilleur de nos connaissances, la spécification modulaire et la vérification modulaire sont faiblement couvertes et constituent un champ de recherche très intéressant. De même, les interactions entre aspects est un sérieux problème dans la communauté des aspects. Pour faire face à ces problèmes, nous avons choisi d’utiliser la théorie des catégories et les techniques des spécifications algébriques. Pour apporter une solution aux problèmes ci-dessus cités, nous avons utilisé les travaux de Wiels [110] et d’autres contributions telles que celles décrites dans le livre [25]. Nous supposons que le système en développement est déjà décomposé en aspects et classes. La première contribution de notre thèse est l’extension des techniques des spécifications algébriques à la notion d’aspect. Deuxièmement, nous avons défini une logique, LA , qui est utilisée dans le corps des spécifications pour décrire le comportement de ces composantes. La troisième contribution consiste en la définition de l’opérateur de tissage qui correspond à la relation d’interconnexion entre les modules d’aspect et les modules de classe. La quatrième contribution concerne le développement d’un mécanisme de prévention qui permet de prévenir les interactions indésirables dans les systèmes orientés aspect. / One of the main goals of software engineering is to enable the construction of large, complex and reliable software in timely fashion. Object-oriented (OO) technology has provided modeling and programming principles and techniques that allow developing complex software systems both in academic and industrial areas. In return, experience gained in OO system development has allowed discovering some limitations of object technology (e.g., code scattering and poor traceability problems). Aspect Oriented (AO) Technology is a post-object-oriented technology emerged to overcome limitations of Object Oriented (OO) Technology, such as the crosscutting concern problem. Crosscutting concerns are scattered and tangled concerns. Major goals of Aspect Oriented Programming (AOP) include improving modularity, cohesion, and overall software quality. Aspect Oriented Programming results in the evolution of programming activities to fullblown software engineering processes, to preserve modularity and traceability, which are two important properties of high-quality software. Yet, there are also many challenges in AO Technology. Reasoning, specification, and verification of AO programs present unique challenges especially as such programs evolve over time. Consequently, modular reasoning of such programs is highly attractive as it enables tractable evolution, otherwise necessitating that the entire program be reexamined each time a component is changed or is added. It is well known in the literature, however, that modular reasoning about AO programs is difficult due to the fact that the aspects applied often alter the behavior of the base components [47]. The same modular reasoning difficulties are also present in the specification and verification phases of software development process. To the best of our knowledge, AO modular specification and verification is a weakly covered subject and constitutes an interesting open research field. Also, aspect interaction is a major concern in the aspect-oriented community. To deal with these problems, we choose to use category theory and algebraic specification techniques. To achieve the above thesis goals, we use the work of Wiels [110] and other contributions such as the one described in [25]. We assume at the beginning that the system under development is already decomposed into aspect and class components. The first contribution of our thesis is the extension of the algebraic specification technique to the notion of aspect. Secondly, we define a logic, LA that is used in specification bodies to describe the behavior of these components. The third contribution concerns the defini tion of the weaving operator corresponding to the weaving interconnection relationship between aspect modules and class modules. The fourth contribution consists of the design of a prevention policy that is used to prevent or avoid undesirable aspect interactions in aspect-oriented systems.
25

Développement d'Applications à Base de Composants avec une Approche Centrée sur les Données et dans une Architecture Orientée Service et Pair-à-Pair : Spécification, Analyse et Intergiciel

Ait Lahcen, Ayoub 15 December 2012 (has links) (PDF)
Le développement d'applications avec une architecture Pair-à-Pair (P2P) est devenu de plus en plus important en ingénierie du logiciel. Aujourd'hui, un grand nombre d'organisations de tailles et secteurs différents compte d'une manière croissante sur la collaboration entre multiples acteurs (individus, groupes, communautés, etc.) pour accomplir des tâches essentielles. Ces applications P2P ont généralement un comportement récursif que plusieurs approches de modélisation ne peuvent pas décrire et analyser (ex. les approches basées sur les automates à états finis). Un autre challenge qui concerne le développement d'applications P2P est le couplage fort entre la spécification d'une part, et les technologies et protocoles sous-jacents d'autre part. Cela force les développeurs à faire des efforts considérables pour trouver puis comprendre des informations sur les détails de ces couches basses du P2P. De plus, ce couplage fort oblige les applications à s'exécuter dans des environnements figés. Par conséquent, choisir par exemple un autre protocole pour répondre à un nouveau besoin à l'exécution devient une tache très difficile. Outre ces points, les applications P2P sont souvent spécifiées avec une faible capacité à déléguer des traitements entre les pairs, et se focalisent surtout sur le partage et le stockage de données. Ainsi, elles ne profitent pas pleinement de la puissance de calcul et de traitement offerte par le réseau P2P sous-jacent. Dans cette thèse, nous présentons une approche qui combine les principes du développement orienté composants et services avec des techniques issues des Grammaires Attribuées et d'analyses de flot de données (techniques utilisées surtout dans la construction de compilateurs) afin de faciliter la spécification, l'analyse et le déploiement d'applications dans des architectures P2P. Cette approche incorpore: i) Un langage formel nommé DDF (de l'anglais Data-Dependency Formalism) pour spécifier les applications et construire leurs graphes de dépendances de données. Un graphe de dépendances de données est nommé DDG (de l'anglais Data-Dependency Graph) et est défini pour être une représentation abstraite de l'application spécifiée. ii) Une méthode d'analyse qui utilise le graphe de dépendances de données pour inférer et calculer diverses propriétés, y compris certaines propriétés que les model-checkers ne peuvent pas calculer si le système présente un comportement récursif. iii) Un intergiciel nommé SON (de l'anglais Shared data Overlay Network) afin de développer et d'exécuter des applications dans une architecture P2P sans faire face à la complexité des couches sous-jacentes. Cela grâce essentiellement au couplage faible (par une approche orientée services) et à la fonctionnalité de génération de code automatique.

Page generated in 0.131 seconds