1 |
Is the cultural field hypothesis true for Finland?Tapio Bustos, Emanuel January 2023 (has links)
This study presents an in-depth analysis of spatial voting behavior in Finland at the municipality level, using electoral data from 1983 to 2019. The primary objective is to investigate if the cultural field hypothesis holds true for Finland. If this hypothesis holds, distinct cultural domains should emerge within Finland. Furthermore, we hypothesized that if the cultural field hypothesis holds true, a distinct community would appear along the Russian border, leading to an east-west partition of Finland. To test the cultural field hypothesis, we do a spatial correlation analysis, and we use community detection to find distinct communities within Finland. The spatial correlation analysis suggested the existence of distinct communities in Finland that span approximately 400 km in length. The community detection then confirms this, revealing two main communities: The northern and the southern communities, and in 6 out of 10 elections, three communities emerged. Hence, the cultural field hypothesis holds true for Finland. However, the distribution of these communities did not support the hypothesis that a distinct community would emerge along the Russian border creating an east-west partition of Finland. Instead, we observed a north-south and a “west/south coastal” partition.
|
2 |
Analysis of Total Electron Content (TEC) Variations in the Low- and Middle-Latitude IonosphereShim, JA Soon 01 May 2009 (has links)
Detailed study of the spatial correlations of day-to-day ionospheric TEC variations on a global scale was performed for four 30-day-long periods in 2004 (January, March/April, June/July, September/October) using observations from more than 1000 ground-based GPS receivers. In order to obtain the spatial correlations, initially, the day-to-day variability was calculated by first mapping the observed slant TEC values for each 5-minute GPS ground receiver-satellite pair to the vertical and then differencing it with its corresponding value from the previous day. This resulted
in more than 150 million values of day-to-day change in TEC (delta TEC). Next, statistics were performed on the delta TEC values. The study indicates strong correlationsbetween geomagnetic conjugate points, and these correlations are larger at low latitudes than at middle latitudes. Typical correlation lengths, defined as the angular
separation at which the correlation coefficient drops to 0.7, were found to be larger at middle latitudes than at low latitudes. The correlation lengths are larger during daytime than during nighttime. The results indicate that the spatial correlation is largely independent of season. These spatial correlations are important for understanding the physical mechanisms that cause ionospheric weather variability and are also relevant to data assimilation. In an effort to better understand the effects of neutral wind and electric field on the TEC variability, a physics-based numerical
Ionosphere/Plasmasphere Model (IPM) was used. The model solves the transport equations for the six ions, O+, NO+, O2+, N2+, H+, and He+, on convecting flux tubes that realistically follow the geomagnetic field. Two of the inputs required by the IPM are the thermospheric neutral wind and the low-latitude electric field, which can be given by existing empirical model or externally specified by the user. To study the relative importance of the neutral wind and the electric field for the TEC variations, these two model inputs were externally modified and the resulting variations in TEC were compared. Neutral wind and electric field modifications were introduced at three different local times in order to investigate the effect of different start times of the imposed perturbations on TEC. This study focused on modeled low- and middlelatitude TEC variations in the afternoon and post-sunset at three different longitude sectors for medium solar activity and low geomagnetic activity. The largest changes in TEC were found predominantly in the equatorial anomaly, and a significant longitudinal dependence was observed. The results indicate that the perturbation effect on the TEC at 2100 LT varied nonlinearly with the elapsed time after the imposed neutral wind and electric field perturbations. An important outcome of this study is that daytime neutral wind and/or electric field modifications will lead to essentially identical TEC changes in the 2100 local time sector.
|
3 |
Geographic Disparities in Future Global Food Security : Exploring the Impacts of Population Development and Climate ChangeHelander, Hanna January 2017 (has links)
Meeting the food demands of a growing population is one of the currently most critical issues for the world community. Additionally, negative impacts of climate change on agriculture are expected in some densely populated regions of developing economies. In this thesis, I examine spatial patterns of future impacts of population development and climate change on food security and how these impacts correlate with current patterns of food security and poverty. I aim to assess the global spatial patterns of food insecurity, concerning the current situation and future prognosis, to quantify the impact of population development and climate change on food security, and to examine to what extent poverty can explain spatial patterns. To identify spatial patterns, I performed a multiple correlation analysis. The aggregated impact estimate of population development and climate change was calculated by adding their respective national predictions. The explanatory power of poverty was evaluated using regression models which contained population development predictions and current food security as functions of poverty rate. Based on the my results and a literature review I discuss the future geographic disparities of food security and the corresponding consequences for combating hunger. My results show that global geographic disparities are likely to increase substantially, mainly because population, and in turn food demand, will increase strongly in sub-Saharan Africa, the region with the highest decline of resources in relation to population. Impacts of climate change show a similar geographic pattern where foodinsecure regions will be affected the most. I found that poverty is a significant explanatory variable for both population growth and food security. The literature review support causality between variables, which places poverty at the core of food security issues. Poverty causes both a barrier to access food markets and population growth,which ultimately decrease food availability. In order to reach zero hunger for the coming generations, there is an urgent need to redistribute resources, change direction in agriculture practices and implement extensive political measures that carefully consider both local and global contexts.
|
4 |
Hydrophobicity and Composition-Dependent Anomalies in Aqueous Binary Mixtures, along with some Contribution to Diffusion on Rugged Energy LandscapeBanerjee, Saikat January 2014 (has links) (PDF)
I started writing this thesis not only to obtain a doctoral degree, but also to compile in a particular way all the work that I have done during this time. The articles published during these years can only give a short overview of my research task. I decided to give my own perspective of the things I have learned and the results I have obtained. Some sections are directly the published articles, but some other are not and contain a significant amount of unpublished data. Even in some cases the published plots have been modified / altered to provide more insight or to maintain consistency. Historical perspectives often provide a deep understanding of the problems and have been briefly discussed in some chapters.
This thesis contains theoretical and computer simulation studies to under-stand effects of spatial correlation on dynamics in several complex systems. Based on the different phenomena studied, the thesis has been divided into three major parts:
I. Pair hydrophobicity, composition-dependent anomalies and structural trans-formations in aqueous binary mixtures
II. Microscopic analysis of hydrophobic force law in a two dimensional (2D) water-like model system
III. Diffusion of a tagged particle on a rugged energy landscape with spatial correlations
The three parts have been further divided into ten chapters. In the following we provide part-wise and chapter-wise outline of the thesis.
Part I consists of six chapters, where we focus on several important aqueous binary mixtures of amphiphilic molecules. To start with, Chapter 1 provides an introduction to non-ideality often encountered in aqueous binary mixtures. Here we briefly discuss the existing ideas of structural transformations associated with solvation of a foreign molecule in water, with particular emphasis on the classic “iceberg” model. Over the last decade, several investigations, especially neutron scattering and diffraction experiments, have questioned the validity of existing theories and have given rise to an alternate molecular picture involving micro aggregation of amphiphilic co-solvents in their aqueous binary mixtures. Such microheterogeneity was also supported by other experiments and simulations.
In Chapter 2, we present our calculation of the separation dependence of potential of mean force (PMF) between two methane molecules in water-dimethyl sulfoxide (DMSO) mixture, using constrained molecular dynamics simulation. It helps us to understand the composition-dependence of pair hydrophobicity in this binary solvent. We find that pair hydrophobicity in the medium is surprisingly enhanced at DMSO mole fraction xDMSO ≈ 0.15, which explains several anomalous properties of this binary mixture – including the age-old mystery of DMSO being a protein stabilizer at lower concentration and protein destabilizer at higher concentration.
Chapter 3 starts with discussion of non-monotonic composition dependence of several other properties in water-DMSO binary mixture, like diffusion coefficient, local composition fluctuation and fluctuations in total dipole moment of the system. All these properties exhibit weak to strong anomalies at low solute concentration. We attempt to provide a physical interpretation of such anomalies. Previous analyses often suggested occurrence of a “structural transformation” (or, microheterogeneity) in aqueous binary mixtures of amphiphilic molecules. We show that this structural transformation can be characterized and better understood under the purview of percolation theory. We define the self-aggregates of DMSO as clusters. Analysis of fractal dimension and cluster size distribution with reference to corresponding “universal” scaling exponents, combined with calculation of weight-averaged fraction of largest cluster and cluster size weight average, reveal a percolation transition of the clusters of DMSO in the anomalous concentration range. The percolation threshold appears at xDMSO ≈ 0.15. The molecular picture suggests that DMSO molecules form segregated islands or micro-aggregates at concentrations below the percolation threshold. Close to the critical concentration, DMSO molecules start forming a spanning cluster which gives rise to a bi-continuous phase (of water-rich region and DMSO-rich region) beyond the threshold of xDMSO ≈ 0.15. This percolation transition might be responsible for composition-dependent anomalies of the binary mixture in this low concentration regime.
Similar phenomenon is observed for another amphiphilic molecule – ethanol, as discussed in Chapter 4. We again find composition dependent anomalies in several thermophysical properties, such as local composition fluctuation, radial distribution function of ethyl groups and self-diffusion co-efficient of ethanol. Earlier experiments often suggested distinct structural regimes in water-ethanol mixture at different concentrations. Using the statistical mechanical techniques introduced in the previous chapter, we show that ethanol clusters undergo a percolation transition in the anomalous concentration range. Despite the lack of a precise determination of the percolation threshold, estimate lies in the ethanol mole fraction range xEtOH ≈ 0.075 - 0.10. This difficulty is probably due to transient nature of the clusters (as will be discussed in Chapter 6) and finite size of the system. The scaling of ethanol cluster size distribution and the fractal behavior of ethanol clusters, however, conclusively demonstrate their “spanning” nature.
To develop a unified understanding, we further study the composition-dependent anomalies and structural transformations in another amphiphilic molecule, tertiary butyl alcohol (TBA) in Chapter 5. Similar to the above-mentioned aqueous binary mixtures of DMSO and ethanol, we demonstrate here that the anomalies occur due to local structural changes involving self-aggregation of TBA molecules and percolation transition of TBA clusters at xTBA ≈ 0.05. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of the largest water cluster. This second transition gives rise to another set of anomalies around.
We conclude this part of the thesis with Chapter 6, where we introduce a novel method for understanding the stability of fluctuating clusters of DMSO, ethanol and TBA in their respective aqueous binary mixtures. We find that TBA clusters are the most stable, whereas ethanol clusters are the most transient among the three representative amphiphilic co-solvents. This correlates well with the amplitude of anomalies observed in these three binary mixtures.
Part II deals with the topic of hydrophobic force law in water. In the introductory Chapter 7 of this part, we briefly discuss the concept of hydrophobicity which is believed to be of importance in understanding / explaining the initial processes involved in protein folding. We also discuss the experimental observations of Israelachvili (on the force between hydrophobic plates) and the empirical hydrophobic force law. We briefly touch upon the theoretical back-ground, including Lum-Chandler-Weeks theory. We conclude this chapter with a brief account of relevant and important in silico studies so far.
In Chapter 8, we present our studies on Mercedes-Benz (MB) model – a two dimensional model system where circular disks interact with an anisotropic potential. This model was introduced by Ben-Naim and was later parametrized by Dill and co-workers to reproduce many of the anomalous properties of water.
Using molecular dynamics simulation, we show that hydrophobic force law is indeed observed in MB model, with a correlation length of ξ=3.79. The simplicity of the model enables us to unravel the underlying physics that leads to this long range force between hydrophobic plates. In accordance with Lum-Chandler-Weeks theory, density fluctuation of MB particles (leading to cavitation) between the hydrophobic rods is clearly distinguishable – but it is not sufficiently long ranged, with density correlation extending only up to ζ=2.45. We find that relative orientation of MB molecules plays an important role in the origin of the hydrophobic force in long range. We define appropriate order parameters to capture the role of orientation, and briefly discuss a plausible approach of an orientation-dependent theory to explain this phenomenon.
Part III consists of two chapters and focuses on the diffusion of a Brownian particle on a Gaussian random energy landscape. We articulate the rich history of the problem in the introductory Chapter 9. Despite broad applicability and historical importance of the problem, we have little knowledge about the effect of ruggedness on diffusion at a quantitative level. Every study seems to use the expression of Zwanzig [Proc. Natl. Acad. U.S.A, 85, 2029 (1988)] who derived the effective diffusion coefficient, Deff =D0 exp (-β2ε2 )for a Gaussian random surface with variance ε, but validity of the same has never been tested rigorously.
In Chapter 10, we introduce two models of Gaussian random energy surface – a discrete lattice and a continuous field. Using computer simulation and theoretical analyses, we explore many different aspects of the diffusion process. We show that the elegant expression of Zwanzig can be reproduced ex-actly by Rosenfeld diffusion-entropy scaling relationship. Our simulations show that Zwanzig’s expression overestimates diffusion in the uncorrelated Gaussian random lattice – differing even by more than an order of magnitude at moderately high ruggedness (ε>3.0). The disparity originates from the presence of “three-site traps” (TST) on the landscape – which are formed by deep minima flanked by high barriers on either side. Using mean first passage time (MFPT) formalism, we derive an expression for the effective diffusion coefficient, Deff =D0 exp ( -β2ε2)[1 +erf (βε/2)]−1 in the presence of TSTs. This modified expression reproduces the simulation results accurately. Further, in presence of spatial correlation we derive a general expression, which reduces to Zwanzig’s form in the limit of infinite spatial correlation and to the above-mentioned equation in absence of correlation. The Gaussian random field has an inherent spatial correlation. Diffusion coefficient obtained from the Gaussian field – both by simulations and analytical methods – establish the effect of spatial correlation on random walk. We make special note of the fact that presence of TSTs at large ruggedness gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. We characterize the same using non-Gaussian order parameter, and show that this “breakdown” scales with ruggedness following an asymptotic power law.
We have discussed the scope of future work at the end of each chapter when-ever appropriate.
|
Page generated in 0.0939 seconds