• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 8
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 52
  • 30
  • 30
  • 21
  • 16
  • 14
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Optical Property Study of 2D Graded Photonic Super-Crystals for Photon Management

Hassan, Safaa 05 1900 (has links)
In this dissertation, we study the optical property of 2D graded photonic super-crystals (GPSCs) for photon management. We focused primarily on manipulation and control of light by using the newly discovered GPSCs which present great opportunity for electromagnetic wave control in photonic devices. The GPSC has been used to explore the superior capability of improving the light extraction efficiency of OLEDs. The enhancement of extraction efficiency has been explained in term of destructive interference of surface plasmon resonance and out-coupling of surface plasmon through phase matching provided by GPSC and verified by e-field intensity distributions. A large light extraction efficiency up to 75% into glass substrate has been predicted through simulation. We also study the light trapping enhancement in GPSCs. Broadband, wide incident angle, and polarization independent light trapping enhancement is achieved in silicon solar cells patterned with the GPSCs. In addition, novel 2D GPSCs were fabricated using holographic lithography through the interference lithography by two sets of multiple beams arranged in a cone geometry using a spatial light modulator (SLM). Finally, we also report a fabrication of GPSCs with a super-cell size of 12a×12a by using e-beam lithography. Diffraction pattern from GPSCs reveals unique diffraction properties. In an application aspect, light emitting diode arrays can be replaced by a single light emitting diode shinning onto the diffraction pattern for a uniform fluorescence.
62

Fresnelova nekoherentní korelační holografie (FINCH) / Fresnel Incoherent Correlation Holography (FINCH)

Bouchal, Petr January 2012 (has links)
This master’s thesis develops a novel method of digital holography, from recent studies known as Fresnel Incoherent Correlation Holography (FINCH). The method enables the reconstruction of the correlation records of three-dimensional objects, captured under quasi-monochromatic, incoherent illumination. The experimental system is based on an action of a Spatial Light Modulator, driven by computer generated holograms to create mutually correlated beams. Both optical and digital parts of the experiment can be carried out using procedures of classical holography, diffractive optics and digital holography. As an important theoretical result of the master’s thesis, a new computational model was proposed, which allows to describe the experiment completely with respect to its two basic phases. The proposed model allows to understood the method intuitively and can be used additionally for analysis and interpretation of the imaging parameters and the system optimalization. The theoretical part of the master’s thesis also presents a detailed description of the correlation imaging based on an appropriate reconstruction process. Computational models were developed for both monochromatic and quasi-monochromatic illumination. In experimental part, all theoretical results were verified. The imaging parameters were examined using standard resolution target tests and appropriate biological samples. As an original experimental result, spiral modification of the system resulting in a vortex imaging was proposed and realized. Here, a selective edge enhancement of three-dimensional objects is possible, resulting in a significant extension of possible applications of the method.
63

Perspectives of multimode fibers and digital holography for optogenetics

Czarske, Jürgen W., Haufe, Daniel, Koukourakis, Nektarios, Büttner, Lars 08 August 2019 (has links)
Optogenetic approaches allow the activation or inhibition of genetically prescribed populations of neurons by light. In principle, optogenetics offers not only the ability to elucidate the functions of neural circuitry, but also new approaches to a treatment of neurodegenerative diseases and recovery of vision and auditory perception. Optogenetics already has revolutionized research in neuroscience. However, new methods for delivering light to three-dimensionally distributed structures e.g. in the brain are necessary. A major hurdle for focusing light through biological tissue is the occurring scattering and scrambling of the light. We demonstrate the correction of the scrambling in a multimode fiber by digital optical phase conjugation with a perspective for ptogenetics.
64

System design of programmable 4f phase modulation techniques for rapid intensity shaping: A conceptual comparison

Roth, Matthias, Heber, Jörg, Janschek, Klaus 29 August 2019 (has links)
The present study analyses three beam shaping approaches with respect to a light-efficient generation of i) patterns and ii) multiple spots by means of a generic optical 4f-setup. 4f approaches share the property that due to the one-to-one relationship between output intensity and input phase, the need for time-consuming, iterative calculation can be avoided. The resulting low computational complexity offers a particular advantage compared to the widely used holographic principles and makes them potential candidates for real-time applications. The increasing availability of high-speed phase modulators, e.g. on the basis of MEMS, calls for an evaluation of the performances of these concepts. Our second interest is the applicability of 4f methods to high-power applications. We discuss the variants of 4f intensity shaping by phase modulation from a system-level point of view which requires the consideration of application relevant boundary conditions. The discussion includes i) the micro mirror based phase manipulation combined with amplitude masking in the Fourier plane, ii) the Generalized Phase Contrast, and iii) matched phase-only correlation filtering combined with GPC. The conceptual comparison relies on comparative figures of merit for energy efficiency, pattern homogeneity, pattern image quality, maximum output intensity and flexibility with respect to the displayable pattern. Numerical simulations illustrate our findings.
65

Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays

Roth, Matthias, Heber, Jörg, Janschek, Klaus 06 September 2019 (has links)
The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically offer frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.
66

Application of adaptive optics for flexible laser induced ultrasound field generation and uncertainty reduction in measurements

Büttner, Lars, Schmieder, Felix, Teich, Martin, Koukourakis, Nektarios, Czarske, Jürgen 06 September 2019 (has links)
The availability of spatial light modulators as standard turnkey components and their ongoing development makes them attractive for a huge variety of optical measurement systems in industry and research. Here, we outline two examples of how optical measurements can benefit from spatial light modulators. Ultrasound testing has become an indispensable tool for industrial inspection. Contact-free measurements can be achieved by laser-induced ultrasound. One disadvantage is that due to the highly divergent sound field of the generated shear waves for a point-wise thermoelastic excitation, only a poor spatial selectivity can be achieved. This problem can be solved by creating an ultrasound focus by means of a ring-like laser intensity distribution, but standard fixed-form optical components used for their generation are always optimised to a fixed set of parameters. Here, we demonstrate, how a predefined intensity pattern as e.g. a ring can be created from an arbitrary input laser beam using a phase-retrieval algorithm to shape an ultrasound focus in the sample. By displaying different patterns on the spatial light modulator, the focus can be traversed in all three directions through the object allowing a fast and highly spatially resolving scanning of the sample. Optical measurements take often place under difficult conditions. They are affected by variations of the refractive index, caused e.g. by phase boundaries between two media of different optical density. This will result in an increased measurement uncertainty or, in the worst case, will cause the measurement to fail. To overcome these limitations, we propose the application of adaptive optics. Optical flow velocity measurements based on image correlation in water that are performed through optical distortions are discussed. We demonstrate how the measurement error induced by refractive index variations can be reduced if a spatial light modulator is used in the measurement setup to compensate for the wavefront distortions.
67

Advanced wavefront sensing and astrometric techniques for the next generation of extremely large telescopes

Taheri, Mojtaba 29 April 2022 (has links)
The new generation of giant ground-based telescopes will see their first light this decade. These state-of-the-art facilities will significantly surpass the resolving power of modern space-based observatories such as the James Webb telescope, thanks to their enormous aperture size and adaptive optics (AO) facilities. Without AO, atmospheric turbulence would degrade the image quality of these enormous telescopes to that of a 50 cm amateur one. These extremely large telescopes (ELTs) will further benefit from a particular branch of AO called multi-conjugate adaptive optics (MCAO), which provides an extremely high resolving power over a much wider field of view as compared to classical AO systems. The design and fabrication of such systems, as well as their optimal use for science operation, pose a great challenge as they are an order of magnitude more complicated than current AO systems. To face such a challenge, the combined knowledge of MCAO system design and fabrication, working in tandem with scientific insights into new astronomy science cases, is an extremely valuable and essential pairing. This thesis is an effort to not only contribute to the design and fabrication of ELT MCAO facilities, but also provide guidance on the optimal method to utilize these giant telescopes to achieve unprecedented astrometric measurements. On the instrumentation side, in partnership with the National Research Council of Canada's - Herzberg Astronomy and Astrophysics Institute as well as W.M. Keck Observatory in Hawaii, I was involved in the design and fabrication of a cutting edge new wavefront sensor, which is the eye of an AO system. I performed opto-mechanical design and verification studies for components of the Keck infrared pyramid wavefront sensor (IR-PWFS) as well as the Keck Planet Imager and characterizer (KPIC) instrument, which have both been commissioned and are in science operation. Furthermore, I designed the alignment plan and participated in the modification and alignment operation of a few components on the Keck II adaptive optics bench on the summit of Mauna Kea. To pave the way for the design verification of future MCAO systems for ELTs, I proposed a new method for an old challenge in the path of AO system design and verification: a flexible method for precise intensity pattern injection into laboratory AO benches. AO benches are the backbone of instrument design and modeling. One of the challenges especially important for the future generation of MCAO systems for ELTs is the verification of the effect of shadowed regions on the primary mirror. During my PhD, I successfully demonstrated the feasibility of a new proposed method to accurately model the telescope pupil. This work was done in partnership with the Laboratoire d'Astrophysique de Marseille (LAM) in France. The method I developed at LAM will be implemented in the AO Lab at NRC Herzberg Astronomy and Astrophysics. As an observational astronomer, I focused on developing methods for making optimal astrometric measurements with MCAO-enabled telescopes. The expected unparalleled astrometric precision of ELTs comes with many unprecedented challenges that if left unresolved, would jeopardize the success of these facilities as they would not be able to reach their science goals. I used observations with the only available MCAO system in science operation, the Gemini MCAO system on the 8-meter Gemini South telescope in Chile, to develop and verify a pipeline specifically designed for very high-precision astrometric studies with MCAO-fed imagers. I successfully used the pipeline to provide the precise on-sky differential distortion of the Gemini South telescope and its MCAO facilities by looking deep into the core of globular cluster NGC~6723. Using this pipeline, I produced high quality proper motions with an uncertainty floor of $\sim 45$\,$\mu$as~yr$^{-1}$ as well as measured the proper motion dispersion profile of NGC~6723 from a radius of $\sim 10$ arcseconds out to $\sim 1$\,arcminute, based on $\sim 12000$ stars. I also produced a high-quality optical-near-infrared color magnitude diagram which clearly shows the extreme horizontal branch and main-sequence knee of this cluster. / Graduate
68

Contributions to the design of Fourier-optical modulation systems based on micro-opto-electro-mechanical tilt-mirror arrays

Roth, Matthias 27 October 2020 (has links)
Spatial Light Modulators (SLMs) based on Micro-Opto-Electro-Mechanical Systems (MOEMS) are increasingly being used in various fields of optics and enable novel functionalities. The technology features frame rates from a few kHz to the MHz range as well as resolutions in the megapixel range. The field continues to make rapid progress, but technological advancements are always associated with high expenditure. Against this background, this dissertation addresses the question: What contribution can optical system design make to the further development of MOEMS-SLM-based modulation? A lens is a simple example of an optical system. This dissertation deals with system design based on Fourier optics in which the wave properties of light are exploited. On this basis, arrays of micromirrors can modulate light properties in a spatially resolved manner. For example, tilt-mirrors can control the intensity distribution in an image plane. In this dissertation variations of the aperture required for this are investigated. In addition to known absorbing apertures, phase filters in particular are investigated, which apply a spatially distributed delay effect to the light wave. This dissertation proposes the combination of MOEMS-SLMs with static, pixelated elements in the same system. These may be pixelated phase masks, also known as diffractive optical elements (DOEs). Analogously, pixelated polarizer arrays and absorbing photomasks exist. The combination of SLMs and static elements allows new degrees of freedom in system design. This thesis proposes new modulation systems based on MOEMS tilt-mirror SLMs. These systems use analog tilt-mirror arrays for the simultaneous modulation of intensity and phase as well as intensity and polarization. The proposed systems thus open up new possibilities for MOEMS-based spatial light modulation. Their properties are validated and investigated by numerical simulations. System properties and limitations are derived from these near and far field simulations. This dissertation shows that the modulation of different MOEMS-SLM types can be fundamentally changed by system design. Piston mirror arrays are classically used for phase modulation and tilt-mirror arrays for intensity modulation. This thesis proposes the use of subpixel phase structures. Their use approximately provides tilt-mirrors with the phase-modulating effect of piston-mirrors. In order to achieve this, a new optimization method is presented. Piston-mirror arrays are available only to a limited extent. By contrast, tilt-mirror arrays are well established. In combination with subpixel phase features, tilt-mirrors may replace piston-mirrors in some applications. These and other challenges of MOEMS-SLM technology can be adequately addressed on the basis of system design. / Räumliche Lichtmodulatoren (Spatial Light Modulators, SLMs) auf Basis von Mikro-Opto-Elektro-Mechanischen Systemen (MOEMS) finden zunehmend Anwendung in verschiedensten Teilgebieten der Optik und ermöglichen neuartige Funktionalitäten. Die Technik ermöglicht Frameraten von einigen kHz bis in den MHz-Bereich sowie Auflösungen bis in den Megapixelbereich. Der Fachbereich macht nach wie vor rasche Fortschritte, technologische Weiterentwicklungen sind aber stets mit hohem Aufwand verbunden. Vor diesem Hintergrund widmet sich diese Arbeit der Frage: Welchen Beitrag kann optisches Systemdesign zur Weiterentwicklung der MOEMS-SLM-basierten Modulation leisten? Bereits eine Linse stellt ein Beispiel für ein optisches System dar. Diese Dissertation beschäftigt sich mit Systemdesign auf Basis der Fourier-Optik, bei der die Welleneigenschaften des Lichts genutzt werden. Auf dieser Basis können Arrays von Mikrospiegeln die flächige Verteilung von Licht einstellen. Beispielsweise können Kippspiegel die Intensitätsverteilung in einer Bildebene steuern. In dieser Dissertation werden Variationen der dafür nötigen Apertur untersucht. Neben bekannten absorbierenden Blenden werden insbesondere Phasenfilter untersucht, welche eine flächig verteilte Verzögerungswirkung auf die Lichtwelle aufbringen. Diese Dissertation schlägt die Kombination von MOEMS-SLMs mit statischen, pixelierten Elementen im selben System vor. Hierbei kann es sich um pixelierte Phasenmasken handeln, auch bekannt als diffraktive optische Elemente (DOEs). Analog existieren pixelierte Polarisatorarrays und absorbierende Fotomasken. Die Kombination von SLMs und statischen Elementen ermöglicht neue Freiheiten im Systemdesign. Diese Arbeit schlägt neue Modulationssysteme auf Basis von MOEMS-Kippspiegel-SLMs vor. Diese Systeme nutzen analoge Kippspiegelarrays für die simultane Modulation von Intensität und Phase sowie von Intensität und Polarisation. Die vorgeschlagenen Systeme eröffnen damit neue Möglichkeiten für die MOEMS-basierte Flächenlichtmodulation. Ihre Eigenschaften werden mithilfe von numerischen Simulationen validiert und untersucht. Aus diesen Nah- und Fernfeldsimulationen werden Systemeigenschaften und Limitierungen abgeleitet. Es wird in dieser Arbeit gezeigt, dass die Modulation verschiedener MOEMS-SLM-Typen auf Basis des Systementwurfs fundamental verändert werden kann. Senkspiegelarrays werden klassischerweise zur Modulation der Phase eingesetzt und Kippspiegelarrays zur Modulation der Intensität. Diese Arbeit schlägt die Nutzung von Subpixel-Phasenstrukturen vor. Diese verleihen Kippspiegeln näherungsweise die phasenmodulierende Wirkung von Senkspiegeln. Um dies zu erreichen, wird ein neuartiges Optimierungsverfahren vorgestellt. Senkspiegelarrays sind nur in geringem Umfang verfügbar. Im Gegensatz dazu sind Kippspiegelarrays gut etabliert. In Kombination mit Subpixel-Phasenstrukturen könnten Kippspiegel in einigen Anwendungen Senkspiegel ersetzen. Diese und andere Herausforderungen der MOEMS-SLM-Technologie lassen sich auf der Grundlage des Systemdesigns adäquat adressieren.
69

Rydberg excitation dynamics and correlations in arbitrary 2D arrays of single atoms / La dynamique et correlations d'excitations Rydberg dans des matrices 2D des atomes unique

Labuhn, Henning 26 February 2016 (has links)
Dans cette thèse, nous mesurons la dynamique cohérente et les corrélations spatiales des excitations Rydberg dans des matrices 2D d’atomes uniques.Nous utilisons un modulateur spatial de lumière pour façonner la phase spatiale d'un faisceau laser de piégeage optique avant de le focaliser avec une lentille asphérique de grande ouverture numérique. En imprimant une phase appropriée sur le faisceau laser, nous pouvons créer des matrices 2D de pièges optiques, de forme arbitraire et facilement reconfigurables, avec jusqu'à 100 pièges séparées de quelques micromètres. Les pièges sont chargés à partir d'un nuage d'atomes froids de 87Rb, et due aux collisions assistées par la lumière, au plus un seul atome peut être présent dans chaque piège en même temps. Une caméra CCD sensible permet en temps réel l'imagerie de la fluorescence atomique émanant des pièges, ce qui nous permet de détecter individuellement la présence d'un atome dans chaque piège avec une précision presque parfaite.Pour créer des interactions importantes entre les atomes uniques, nous les excitons vers des états de Rydberg, qui sont des états électroniques avec un nombre quantique principal élevé.Un faisceau supplémentaire d'adressage permet la manipulation individuelle d'un atome sélectionné dans la matrice.La connaissance précise, de la fois de la matrice des atomes préparé et des positions des excitations Rydberg, nous a permis de mesurer l’augmentation collective de la couplage optique dans le régime de blocage Rydberg, où une seule excitation est partagée de façon symétrique entre tous les atomes de la matrice.Dans le régime où l'interaction ne s’étend que sur quelques sites, nous avons mesuré la dynamique et les corrélations spatiales des excitations Rydberg, dans des matrices d’atomes à une et deux dimensions. La comparaison à une simulation numérique d'un modèle d'Ising quantique d'un système de spin-1/2 montre un accord exceptionnel pour les matrices où l'effet de l'anisotropie de l’interaction Rydberg-Rydberg est faible. Les résultats obtenus démontrent que les atomes Rydberg uniques sont une plate-forme bien adaptée pour la simulation quantique des systèmes de spin. / In this thesis, we measure the coherent dynamics and the pair correlations of Rydberg excitations in two-dimensional arrays of single atoms.We use a spatial light modulator to shape the spatial phase of a single optical dipole trap beam before focusing it with a high numerical-aperture aspheric lens. By imprinting an appropriate phase pattern on the trap beam, we can create arbitrarily shaped and easily reconfigurable 2D arrays of high-quality single-atom traps, with trap-spacings of a few micrometers for up to 100 traps. The traps are loaded from a cloud of cold 87Rb atoms, and due to fast light-assisted collisions of atoms inside the traps, at most one atom can be present in each trap at the same time. A sensitive CCD camera allows the real-time, site-resolved imaging of the atomic fluorescence from the traps, enabling us to detect the presence of an atom in each individual trap with almost perfect accuracy.In order to induce strong, tunable interactions between the atoms in the array, we coherently laser-excite them to Rydberg states, which are electronic states with a high principal quantum number.An additional addressing beam allows the individual manipulation of an atom at a selected site in the array.The precise knowledge of both the prepared atom array and the positions of the Rydberg excitations allowed us to measure the collective enhancement of the optical coupling strength in the regime of full Rydberg blockade, where one single excitation is shared symmetrically among all atoms in the array.In the regime where the strong interaction only extends over a few sites, we measured the dynamics and the spatial pair-correlations of Rydberg excitations, in one- and two-dimensional atom arrays. The comparison to a numerical simulation of a quantum Ising model of a spin-1/2 system shows an exceptional agreement for trap geometries where the effect of the anisotropy of the Rydberg-Rydberg interaction is small. The obtained results demonstrate that single Rydberg atoms are a suitable platform for the quantum simulation of spin systems.
70

Optical eigenmodes for illumination & imaging

Kosmeier, Sebastian January 2013 (has links)
This thesis exploits so called “Optical Eigenmodes” (OEi) in the focal plane of an optical system. The concept of OEi is introduced and the OEi operator approach is outlined, for which quadratic measures of the light field are expressed as real eigenvalues of an Hermitian operator. As an example, the latter is employed to locally minimise the width of a focal spot. The limitations of implementing these spots with state of the art spatial beam shaping technique are explored and a selected spot with a by 40 % decreased core width is used to confocally scan an in focus pair of holes, delivering a two-point resolution enhanced by a factor of 1.3. As a second application, OEi are utilised for fullfield imaging. Therefore they are projected onto an object and for each mode a complex coupling coefficient describing the light-sample interaction is determined. The superposition of the OEi weighted with these coefficients delivers an image of the object. Compared to a point-by-point scan of the sample with the same number of probes, i.e. scanning points, the OEi image features higher spatial resolution and localisation of object features, rendering OEi imaging a compressive imaging modality. With respect to a raster scan a compression by a factor four is achieved. Compared to ghost imaging as another fullfield imaging method, 2-3 orders of magnitude less probes are required to obtain similar images. The application of OEi for imaging in transmission as well as for fluorescence and (surface enhanced) Raman spectroscopy is demonstrated. Finally, the applicability of the OEi concept for the coherent control of nanostructures is shown. For this, OEi are generated with respect to elements on a nanostructure, such as nanoantennas or nanopads. The OEi can be superimposed in order to generate an illumination of choice, for example to address one or multiple nanoelements with a defined intensity. It is shown that, compared to addressing such elements just with a focussed beam, the OEi concept reduces illumination crosstalk in addressing individual nanoelements by up to 70 %. Furthermore, a fullfield aberration correction is inherent to experimentally determined OEi, hence enabling addressing of nanoelements through turbid media.

Page generated in 0.0512 seconds