• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 8
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 52
  • 30
  • 30
  • 21
  • 16
  • 14
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electro-optic Polymer Based Fabry-Perot Interferometer Devices for Optoelectronic Applications

Gan, Haiyong January 2008 (has links)
Fabry-Perot interferometer (FPI) devices are designed based on the electro-optic (EO) activities of nonlinear optical (NLO) polymer materials for tunable optical filters (TOFs) and spatial light modulators (SLMs). The performance of the EO polymer based FPI devices is theoretically modeled with first order approximation on the FPI cavity interface phase dispersion. NLO materials including TCBD coupled hybrid sol-gel, AJL8/amorphous polycarbonate (APC), and AJLS102/APC are incorporated in FPI structures with distributed Bragg reflector mirrors and transparent conducting oxide electrodes for TOFs. High finesse (over 200), low drive voltage (10 dB isolation ratio with 5 V), and fast settling time (about sub-millisecond) are achieved. The physical origin of the large tunabilities is explored and the contributions from EO effect and inverse piezoelectric effect are analyzed. EO polymer SWOHF3ME/APC is employed in FPI devices with simplified structures for SLMs. Modulation beyond megahertz level is achieved with constant modulation ratio from DC frequency to high operation speed. The operation speed can be potentially over gigahertz with improved device and drive circuit design. When the EO polymer based SLM is configured to work at near the resonance band of the NLO material, the spectral tunability is increased due to resonance enhanced EO activity and the SLM performance is significantly improved. The EO polymer based FPI devices can be further optimized and are promising candidates for many optoelectronic applications.
32

Aplicação da técnica de contraste de fase da ordem zero na geração de pinças ópticas multi-feixe / Application of the zero order phase contrast technique in the generation of multi-beam optical traps

Jurado Moncada, Javier Augusto 23 November 2017 (has links)
Um sistema multi-feixe de pinças ópticas baseado na técnica de contraste de fase da ordem zero pode apresentar vantagens significativas sobre sistemas mecanicamente complexos e sensíveis ao alinhamento, e sobre tecnologias que, apesar de serem similares, requerem a customização de componentes ópticos. Porém, ao nosso conhecimento, este sistema até agora não tem sido implementado experimentalmente. Neste trabalho tem-se desenvolvido, como prova de princípio, o primeiro sistema baseado na técnica de contraste de fase da ordem zero gerador de múltiplas pinças ópticas. Esta técnica da óptica de Fourier utiliza conceitos do contraste de fase de Zernike e técnicas de codificação de dois pixels para gerar padrões de intensidade no plano da imagem que são diretamente relacionados a distribuições de fase no plano de entrada do sistema, o qual é formado por um modulador espacial de luz (SLM). Esta dissertação de mestrado descreve detalhadamente os passos tomados com o propósito de utilizar os campos estruturados de luz gerados pelo sistema de contraste de fase da ordem zero para aprisionar esferas de 2 µm de diâmetro de sílica fundida. Neste trabalho apresentamos os fundamentos teóricos do aprisionamento óptico e da técnica de contraste de fase da ordem zero, seguidos pela implementação de experimentos independentes em cada modalidade, e finalmente apresentamos a integração de ambos os sistemas dentro um sistema único de pinças ópticas multi-feixe. Apesar da baixa eficiência óptica do sistema, foi possível implementar um sistema de pinças ópticas duplas. Finalizamos o nosso trabalho na discussão detalhada das limitações do nosso arranjo óptico e comentamos sobre potenciais melhorias para aumentar a rigidez das pinças ópticas e a qualidade geral do sistema. / A multi-beam optical trapping system based on the zero order phase contrast technique may offer significant advantages over mechanically-complex, alignment-sensitive optical trapping systems, and over technologies that, though similar, require the customization of optics components. However, to our knowledge, such a system has not been yet implemented experimentally. We have developed, as a proof of principle, what we think is the first system based on the zero order phase contrast technique to successfully generate multiple optical traps. This Fourier optics technique makes use of existing concepts of Zernike phase contrast and two-pixel encoding techniques to generate intensity patterns in the image plane that are directly related to phase distributions in the input plane, which is comprised by a spatial light modulator (SLM). This master\'s dissertation describes in detail the steps taken towards using the structured light fields generated by a zero order phase contrast system to trap 2 µm diameter fused silica beads. We present the theoretical foundations of optical trapping and the zero order phase contrast technique, followed by the implementation of independent laboratory experiments in each modality, and finally integrate both systems into a single optical setup for multi-beam trapping. In spite of the low optical efficiency of the system, we were able to implement dual optical traps. We finalize by discussing in detail the limitations of our experimental setup in and comment on potential improvements to increase the stiffness of the optical traps and the overall quality of the system.
33

Waveguide-Based Spatial Light Modulators for Use in Holographic Video Displays

Qaderi, Kamran 01 March 2018 (has links)
Film display holograms typically diffract light over a wide enough view-angle to be viewed, directly, without intervening optics. However, all holographic video displays must use optics beyond the hologram surface to overcome the challenges of small display extent and low diffraction angle by using some form of demagnification and derotation. We report a leaky mode waveguide spatial light modulator (SLM) with sufficiently high angular diffraction to obviate the need for demagnification in scanned aperture systems. This was achieved by performing a number of experiments to determine the depth of the annealed, proton-exchanged waveguide which corresponded to a maximized diffracted angle. Diffraction sweeps were recorded in excess of 19.5° for 632.8 nm light which is above the 15° required for direct view display. Moreover, we present a paired set of waveguide SLMs capable of a maximum light deflection nearing 28° for red. This deflection, which is several times larger than the angular sweep of current, state-of-the-art modulators, is made possible by the unilateral, near-collinear waveguide nature of the leaky mode interaction. The ability to double angular output in this way, which is either not possible or not practical in other SLMs, is possible in leaky mode devices, thanks to the absence of zero-order light and the lack of high-order outputs. This combined structure has angular deflection high enough to enable color holographic video monitors that do not require angular magnification. Furthermore, the low cost and high angular deflection of these devices may make it possible to make large arrays for flat-screen video holography. One improvement that could be made to the current setup would be to increase the device's diffraction efficiency. One highly influential factor of diffraction efficiency for a Bragg-regime surface acoustic wave (SAW) grating is the length of the interaction between the light and the grating. In this work, we have shown that guided light in a reverse proton exchanged (RPE) waveguide experiences less loss. This enables us to create longer devices which eventually results in devices with higher diffraction efficiency. We have also researched on LCoS SLMs and used them for two different applications: (a) photophoretic-trap volumetric displays and (b) holographic video displays. In the first case, aberrations including spherical, astigmatism, and coma can make particles to trap tighter in the focal point of the beam. Also, a new approach for holographic computations is presented which uses the electromagnetic nature of light in Maxwell Equations to find a unique phase map for every specific 3D object in space.
34

Waveguide-Based Spatial Light Modulators for Use in Holographic Video Displays

Qaderi, Kamran 01 March 2018 (has links)
Film display holograms typically diffract light over a wide enough view-angle to be viewed, directly, without intervening optics. However, all holographic video displays must use optics beyond the hologram surface to overcome the challenges of small display extent and low diffraction angle by using some form of demagnification and derotation. We report a leaky mode waveg- uide spatial light modulator (SLM) with sufficiently high angular diffraction to obviate the need for demagnification in scanned aperture systems. This was achieved by performing a number of experiments to determine the depth of the annealed, proton-exchanged waveguide which corresponded to a maximized diffracted angle. Diffraction sweeps were recorded in excess of 19.5<°> for 632.8 nm light which is above the 15<°> required for direct view display.Moreover, we present a paired set of waveguide SLMs capable of a maximum light deflection nearing 28<°> for red. This deflection, which is several times larger than the angular sweep of current, state-of-the-art modulators, is made possible by the unilateral, near-collinear waveguide nature of the leaky mode interaction. The ability to double angular output in this way, which is either not possible or not practical in other SLMs, is possible in leaky mode devices, thanks to the absence of zero-order light and the lack of high-order outputs. This combined structure has angu- lar deflection high enough to enable color holographic video monitors that do not require angular magnification. Furthermore, the low cost and high angular deflection of these devices may make it possible to make large arrays for flat-screen video holography.One improvement that could be made to the current setup would be to increase the device<&trade>s diffraction efficiency. One highly influential factor of diffraction efficiency for a Bragg-regime surface acoustic wave (SAW) grating is the length of the interaction between the light and the grating. In this work, we have shown that guided light in a reverse proton exchanged (RPE) waveguide experiences less loss. This enables us to create longer devices which eventually results in devices with higher diffraction efficiency.We have also researched on LCoS SLMs and used them for two different applications: (a) photophoretic-trap volumetric displays and (b) holographic video displays. In the first case, aberrations including spherical, astigmatism, and coma can make particles to trap tighter in the focal point of the beam. Also, a new approach for holographic computations is presented which uses the electromagnetic nature of light in Maxwell Equations to find a unique phase map for every specific 3D object in space.
35

Surface-normal multiple quantum well electroabsorption modulators : for optical signal processing and asymmetric free-space communication

Junique, Stéphane January 2007 (has links)
Electroabsorption is the physical phenomenon by which the absorption of light in a medium can be controlled by applying an electric field. The Quantum–Confined Stark Effect, which makes the absorption band–edge in quantum wells very field–dependent, together with the strong absorption peak provided by excitons, are the physical foundations for the success of electroabsorption modulators based on quantum well structures in telecommunication networks. This thesis describes the design and fabrication of surface–normal electroabsorption modulation devices. The techniques needed to understand the design and fabrication of surface–normal multiple quantum well optical modulators are introduced, as are the various characterisation techniques used during and after the fabrication. Devices for several types of applications have been designed, fabricated, characterised and in some cases integrated into optical systems: – Two–dimensional arrays of 128´128 pixel amplitude modulators grown on GaAs substrates have been fabricated and characterised. Speeds of up to 11700 frames per second were demonstrated, limited by the output electronics of the computer interface. – Large–area modulators grown on GaAs substrates for free–space optical communication were developed, with an active area of 2cm2 and a modulation speed of several megahertz. Contrast ratios up to 5:1 on full modulator areas were measured. Problems limiting the yield and modulation speed of such devices have been studied, and solutions to overcome them have been demonstrated. – Large–area devices grown on InP substrates for free–space optical communication have been developed. Contrast ratios of up to 2:1 for transmissive types have been demonstrated. – Devices consisting of two rows of pixels, grown on GaAs substrates, with an active area of 22mm´5mm, divided into 64 or 128 pixels per row have been developed. These amplitude modulation devices were designed for optical signal processing applications. – One variant of these optical signal processing devices was also characterised as a ternary, binary amplitude and binary phase modulator array. – The use of GaAs multiple quantum well optical modulators in a free–space optical retro–communication system has been studied. An opto–mechanical design for a modulating retro–reflector is described, allowing a large field of view in one direction using reflecting, resonant–cavity modulators for high contrast ratios. / QC 20100802
36

Three-dimensional Holographic Lithography and Manipulation Using a Spatial Light Modulator

Jenness, Nathan J. January 2009 (has links)
<p>This research presents the development of a phase-based lithographic system for three-dimensional micropatterning and manipulation. The system uses a spatial light modulator (SLM) to display specially designed phase holograms. The use of holograms with the SLM provides a novel approach to photolithography that offers the unique ability to operate in both serial and single-shot modes. In addition to the lithographic applications, the optical system also possesses the capability to optically trap microparticles. New advances include the ability to rapidly modify pattern templates for both serial and single-shot lithography, individually control three-dimensional structural properties, and manipulate Janus particles with five degrees of freedom.</p><p>A number of separate research investigations were required to develop the optical system and patterning method. The processes for designing a custom optical system, integrating a computer aided design/computer aided manufacturing (CAD/CAM) platform, and constructing series of phase holograms are presented. The resulting instrument was used primarily for the photonic excitation of both photopolymers and proteins and, in addition, for the manipulation of Janus particles. Defining research focused on the automated fabrication of complex three-dimensional microscale structures based on the virtual designs provided by a custom CAD/CAM interface. Parametric studies were conducted to access the patterning transfer rate and resolution of the system.</p><p>The research presented here documents the creation of an optical system that is capable of the accurate reproduction of pre-designed microstructures and optical paths, applicable to many current and future research applications, and useable by anyone interested in researching on the microscale.</p> / Dissertation
37

Surface-normal multiple quantum well electroabsorption modulators based on GaAs-related materials

Junique, Stéphane January 2005 (has links)
No description available.
38

Structured light for three-dimensional microscopy

Krzewina, Leo G 01 June 2006 (has links)
The conventional light microscope is an indispensable tool for many physical and life science applications, but is of limited usefulness for three-dimensional imaging due to its increasingly narrow depth of field at high magnifications. Focused regions may be obscured by defocused neighbors or noise from extraneous light sources and subsurface scattering. By rejecting light originating from outside the depth of focus it is possible to minimize these problems. When a contiguous series of such focused slices, or optical sections, are obtained along an axis of an extended object they may be combined to form a complete, focused three-dimensional surface image. Here, a variety of methods to obtain optical sections in a reflective setup are presented. The first employs an optical feedback loop through a spatial light modulator (SLM) to selectively illuminate focused regions. The SLM is a flexible electro-optical device that also allows (non-feedback) experiments of an intensity modulated light source resulting in illumination with a linear structure. This structured illumination microscopy is an established sectioning technique, which requires three frame captures per axial position. By developing a color grid and exploiting the red, green, and blue channels of a CCD camera, the three frames have been reduced to one. The speed increase comes at a cost and the limiting effects of chromatic aberration are discussed. Digital holography offers an alternative to axial scanning by allowing the surface to be reconstructed from a single exposure. Use of multiple wavelength illumination with this extended focus imaging is proposed and preliminary results are shown.
39

A Tunable Snapshot Imaging Spectrometer

Tebow, Christopher January 2005 (has links)
A tunable snapshot imaging spectrometer has been demonstrated. A liquid crystal spatial light modulator (LC SLM) has been integrated into a computed tomographic imaging spectrometer (CTIS) to achieve tunability. The LC SLM allows for rapid, programmable, and non-mechanical alteration of its phase profile by the application of appropriate voltages to its transparent electrodes.The goal of this dissertation is twofold: (1) to integrate a liquid crystal spatial light modulator into a CTIS instrument and characterize its performance as a tunable CTIS disperser, and (2) to implement tunability by analyzing different CTIS configurations.The theoretical model of CTIS operation, calibration, reconstruction, and disperser design are covered in detail. The cross talk of the LC SLM forces the use of a feedback design algorithm rather than designing the desired phase profile a priori in the computer. The modifications to the current polychromatic linear inversion technique for use with the LC SLM in feedback are presented. The result of the modifications is the successful integration of a reprogrammable (i.e. tunable) disperser for the CTIS instrument.The implementation of tunability is explored by analyzing the spectral resolution of a reconstructed point source for different disperser configurations. A method for experimentally determining the CTIS spectral resolution is presented.
40

Digital micro-mirror devices in digital optical microscopy

Adeyemi, Adekunle Adesanya 19 August 2009 (has links)
In this thesis, studies on the applications of digital micro-mirror devices (DMD) to enhancement of digital optical microscope images are presented. This involves adaptation of the fast switching capability and high optical efficiency of DMD to control the spatial illumination of the specimen. The first study focuses on a method of using DMD to enhance the dynamic range of a digital optical microscope. Our adaptive feedback illumination control method generates a high dynamic range image through an algorithm that combines the DMD-to-camera pixel geometrical mapping and a feedback operation. The feedback process automatically generates an illumination pattern in an iterative fashion that spatially modulates the DMD array elements on a pixel-by-pixel level. Via experiment, we demonstrate a transmitted-light microscope system that uses precise DMD control of a DMD-based projector to enhance the dynamic range ideally by a factor of 573. Results are presented showing approximately 5 times the camera dynamic range, enabling visualization over a wide range of specimen characteristics. The second study presents a technique for programming the source of the spherical reference illumination in a digital in-line holographic microscope using DMD. The programmable point source is achieved by individually addressing the elements of a DMD to spatially control the illumination of the object located at some distance from the source of the spherical reference field. Translation of the ON-state DMD mirror element changes the spatial location of the point source and consequently generates a sequence of translated holograms of the object. The experimental results obtained through numerical reconstruction of translated holograms of Latex microspheres shows the possibility of expanding the field of view by about 263% and also extracting depth information between features in an object volume. The common challenges associated with the use of DMD in coherent and broadband illumination control in both studies are discussed.

Page generated in 0.0798 seconds