101 |
Výpočtová predikce charakteristických parametrů procesu spalování / Calculation prediction of characteristic parameters of combustion processTáborský, Miroslav January 2012 (has links)
The present thesis is focused on calculation prediction of characteristic parameters of combustion process in combustion chamber which is installed at burners testing laboratory. In the thesis basic theoretical knowledge needed for description of heat transfer in process combustion equipment are given. The Plug Flow Furnace Model is based on this knowledge. This model is used to evaluation of specific heat flux in tube furnaces. In the next step the Plug – Flow model is modified and adapted on the combustion chamber. Obtained results are compared with a measured data. By this comparison quality of this model is assessed.
|
102 |
Nuclear magnetic resonance and specific heat studies of half-metallic ferromagnetic Heusler compoundsRodan, Steven 26 January 2016 (has links)
Half-metallic ferromagnets (HMFs), with fully spin-polarized conduction electrons, are prime candidates for optimizing spintronic devices. Many Heusler compounds (a class of ternary and quaternary intermetallics) are predicted to be HMFs, in particular Co$_{2}YZ$ (where $Y$ is usually another transition metal, and $Z$ is an s-p element). Crystal structure is controlled by thermodynamics to a large extent. Ideally, one should be able to control and optimize properties which are of interest by appropriately "tuning" the structure (e.g. annealing), but first one must understand the structure and its relation to observed physical properties. A local structural probe technique such as nuclear magnetic resonance (NMR) is an essential tool for identifying and quantifying the various atomic-scale orderings. Different Heusler structure types and antisite disorders affect the material's physical properties.
In this thesis, order-disorder phenomena in both bulk and thin film samples of Co$_2$Mn$_{1-x}$Si$_x$ and Co$_2$Mn$_{1-x}$Fe$_x$Si have been systematically studied using NMR. Though it is the films which are directly implemented in actual devices, studying bulk samples as model systems provides invaluable information regarding the material properties.
The evolution of local atomic structure in numerous thin films has been shown to depend greatly on preparation parameters, including post-deposition annealing temperature, and specific stoichiometry. For Co$_2$MnSi films, the ideal post-annealing temperature for promoting the $L2_1$ atomic structure was found; the threshold temperature above which structure continues to become higher-ordered in the bulk, but where too much interdiffusion at the buffer interface occurs, degrading the smooth interfaces necessary for high magnetoresistance ratios. NMR also adds evidence that Co$_2$Mn$_x$Si$_{0.88}$ ($x>$1) electrodes in magnetic tunnel junctions have highest tunneling magneto-resistance because the excess Mn suppresses the formation of detrimental Co$_{Mn}$ antisites.
A systematic investigation of several thermal and magnetic properties, including Sommerfeld coefficients, Debye temperatures, saturation magnetic moments, spin-wave stiffness, and magnon specific heat coefficient, were measured for selected Co$_2$-based ternary and quaternary Heusler compounds. Obtained values were compared with theoretical ones calculated using electronic band structure methods. It has been systematically shown that adding a magnon term to the specific heat has a negligible effect on the electronic contribution in all cases.
|
103 |
Wechselspiel von Magnetismus und Supraleitung im Schwere-Fermionen-System CeCu2Si2Arndt, Julia 10 March 2010 (has links)
Das Auftreten von Supraleitung in Systemen mit schweren Fermionen, erstmals entdeckt in CeCu_2Si_2, wird mit der Nähe zu einem quantenkritischen Punkt in Verbindung gebracht. Daraus ergibt sich ein komplexes Zusammenspiel von Magnetismus und Supraleitung, das in der vorliegenden Arbeit durch Messungen der spezifischen Wärme, der Wechselfeldsuszeptibilität und durch inelastische Neutronenstreuexperimente an verschiedenen Einkristallen von CeCu_2(Si_{1-x}Ge_x)_2 untersucht wird. Der Schwerpunkt liegt auf der genauen Charakterisierung des magnetischen Anregungsspektrums von CeCu_2Si_2 des S-Typs. Die Ergebnisse der Neutronenstreumessungen implizieren stark, dass die Kopplung der supraleitenden Cooper-Paare durch überdämpfte Spinfluktuationen vermittelt wird, die in der Umgebung eines Quantenphasenübergangs gehäuft auftreten. Unter Substitution einiger Si- durch Ge-Atome in CeCu_2Si_2 stabilisiert sich die magnetische Ordnung, und die Supraleitung wird zunehmend unterdrückt. Neutronenstreumessungen ergeben, dass dies bei 2 % Ge-Substitution dazu führt, dass sich Magnetismus und Supraleitung gegenseitig verdrängen, während sie bei 10 % Ge-Substitution mikroskopisch koexistieren. - (Die Dissertation ist veröffentlicht im Logos Verlag Berlin GmbH, Berlin, Deutschland, http://www.logos-verlag.de, ISBN: 978-3-8325-2456-2) / The occurrence of superconductivity in systems with heavy fermions, discovered for the first time in CeCu_2Si_2, is often linked to the vicinity of a quantum critical point. This results in a complex interplay of magnetism and superconductivity, which is studied by means of specific heat and ac susceptibility measurements as well as neutron scattering experiments on different single crystals of CeCu_2(Si_{1-x}Ge_x)_2 in the present thesis. The focus is put on the detailed characterisation of the magnetic excitation spectrum in S-type CeCu_2Si_2. Neutron scattering results strongly imply that the coupling of superconducting Cooper pairs is mediated by overdamped spin fluctuations, which accumulate in the vicinity of a quantum phase transition. By substituting Si by Ge atoms in CeCu_2Si_2 magnetic order is stabilised and superconductivity successively suppressed. Neutron scattering experiments demonstrate that 2 % Ge substitution leads to magnetic order being displaced by superconductivity on decreasing temperature, whereas both coexist microscopically in the case of 10 % Ge substitution.
|
104 |
Ab initio Structure Inversion for Amorphous MaterialsBhattarai, Bishal January 2018 (has links)
No description available.
|
105 |
Grundisolering för flerbostadshus : Jämförelse av cellglas och cellplast avseende energieffektivisering, ekonomiska aspekter och miljöpåverkanAkhras, Samir, Arab, Mustafa, Yasin, Ahmed January 2023 (has links)
Purpose: This project compares two foundation insulation materials: cellular plastic and cellular glass. Currently, cellular plastic is the most used material for foundation insulation. While cellular glass is not widely utilized. Its disadvantage lies in its higher cost, which makes contractors prefer the cheaper alternative, cellular plastic. Cellular glass exhibits exceptional properties, including its notable attributes of high load-bearing capacity and superior moisture resistance. The aim of this study is to demonstrate how material savings can be achieved by using cellular glass instead of cellular plastic in the load-bearing parts of the foundation. In addition to cost savings, the study also includes the analysis of carbon dioxide emissions during the production of these materials and specific heat losses through the material. Method: To facilitate understanding of the study, two different buildings were visualized: a two-story building and a seven-story building. The choice of different building sizes aimed to investigate how different loads on foundation insulation affect insulation material costs, carbon dioxide emissions, and the heating requirements of the buildings. Revit and AutoCAD were used for modelling and visualization. Flixo and manual calculations were employed for energy calculations, while manual calculations were used for structural calculations. One Click LCA Software was used to determine the carbon dioxide emissions for the different foundation insulation scenarios. Results: The study suggests that for buildings with lighter loads, cellular plastic is a cost-effective choice, while a hybrid insulation approach combining cellular glass and cellular plastic is the best option considering environmental factors. However, for buildings with higher loads, cellular glass outperforms cellular plastic both in terms of economics and the environment. Nonetheless, a combination of cellular glass and cellular plastic remains the most favourable choice among the three scenarios, as energy losses are approximately the same due to the similar thermal conductivity values of these materials. Conclusion: Hybrid insulation proves to be the most advantageous option in terms of both the environment and economics for both types of buildings studied: the two-story residential building and the seven-story residential building. By using cellular glass F for the load-bearing structures and cellular plastic EPS S60 for the ground slab, effective insulation is achieved. The use of cellular glass F results in material savings, such as cellular plastic XPS 700, which has half the load-bearing capacity of cellular glass F. Additionally, reducing the use of extra concrete for load-bearing foundation constructions decreases the load on the foundation insulation material.
|
106 |
[pt] EXPLORANDO O CALOR NA TERMODINÂMICA ESTOCÁSTICA / [en] EXPLORING THE HEAT IN STOCHASTIC THERMODYNAMICSPEDRO VENTURA PARAGUASSU 04 September 2023 (has links)
[pt] Na Termodinâmica estocástica, o calor é uma variável aleatória que flutua
estatisticamente e, portanto, precisa ser investigada por meio de métodos
estatísticos. Para compreender essa quantidade, a investigamos em diversos
sistemas, como superamortecidos, subamortecidos, não-lineares, isotérmicos
e não-isotérmicos. Os resultados aqui obtidos podem ser divididos em duas
contribuições: a caracterização das distribuições de calor e dos momentos
para diferentes sistemas, e a correção da fórmula do calor para sistemas
superamortecidos, onde descobrimos a necessidade de incluir a energia cinética,
que era previamente ignorada na literatura. Esta tese tem como foco a
compreensão do calor, quantidade fundamental na termodinâmica estocástica. / [en] In Stochastic Thermodynamics, heat is a random variable that statistically fluctuates and therefore needs to be investigated using statistical methods. To understand this quantity, we investigated it for various systems, overdamped, underdamped, nonlinear, isothermal, and non-isothermal. The resultsobtained here can be divided into two contributions, the characterization ofthe distributions of heat and the moments in these different systems, and thecorrection of the formula of heat for overdamped systems, where we discoveredthe need to include the kinetic energy that was previously ignored in the literature. This thesis focuses on understanding heat, a quantity that is fundamentalin stochastic thermodynamics.
|
107 |
Estimating Thermal Conductivity and Volumetric Specific Heat of a Functionally Graded Material using Photothermal RadiometryKoppanooru, Sampat Kumar Reddy 12 1900 (has links)
Functionally graded materials (FGMs) are inhomogeneous materials in which the material properties vary with respect to space. Research has been done by scientific community in developing techniques like photothermal radiometry (PTR) to measure the thermal conductivity and volumetric heat capacity of FGMs. One of the problems involved in the technique is to solve the inverse problem, i.e., estimating the thermal properties after the frequency scan has been obtained. The present work involves finding the unknown thermal conductivity and volumetric heat capacity of the FGMs by using finite volume method. By taking the flux entering the sample as periodic and solving the discretized 1-D thermal wave field equation at a frequency domain, one can obtain the complex temperatures at the surface of the sample for each frequency. These complex temperatures when solved for a range of frequencies gives the phase vs frequency scan which can then be compared to original frequency scan obtained from the PTR experiment by using a residual function. Brute force and gradient descent optimization methods have been implemented to estimate the unknown thermal conductivity and volumetric specific heat of the FGMs through minimization of the residual function. In general, the spatial composition profile of the FGMs can be approximated by using a smooth curve. Three functional forms namely Arctangent curve, Hermite curve, and Bezier curve are used in approximating the thermal conductivity and volumetric heat capacity distributions in the FGMs. The use of Hermite and Bezier curves gives the flexibility to control the slope of the curve i.e. the thermal property distribution along the thickness of the sample. Two-layered samples with constant thermal properties and three layered samples in which one of the layer has varying thermal properties with respect to thickness are considered. The program is written in Fortran and several test runs are performed. Results obtained are close to the original thermal property values with some deviation based on the stopping criteria used in the gradient descent algorithm. Calculating the gradients at each iteration takes considerable amount of time and if these gradient values are already available, the problem can be solved at a faster rate. One of the methods is extending automatic differentiation to complex numbers and calculating the gradient values ahead; this is left for future work.
|
108 |
Thermal Properties of Nuclei and Their Level DensitiesAl Mamun, Md. Abdullah January 2015 (has links)
No description available.
|
109 |
Quality and Thermophysical Properties of Pressure Treated FoodsNguyen, Loc Thai January 2009 (has links)
No description available.
|
110 |
Studies of the Low Temperature Behaviour of CoNb2O6Munsie, Timothy J.S. 04 1900 (has links)
<p>This thesis is the result of several experiments designed to probe the low temperature physics underlying the 1D-Ising-like behaviour of chains of spins in the structure of Cobalt Niobate, CoNb2O6. A collection of prior work has been done by several groups prior to this, focusing on mapping the phase diagram above 0.5K. Interest in this material was renewed recently based upon theoretical work and experimental confirmation of the unique structure of the spins in the system. The bulk of this work was done at temperatures below the previously investigated range to probe the unique properties of this system.</p> <p>The material was grown at McMaster University using the optical floating zone technique from oxide powders. The crystal was examined and oriented using single crystal and Laue diffraction and was cut for use in further experiments. Squid magnetometry was used to confirm the material properties and phase transition temperatures, and was compared to literature values.</p> <p>Heat capacity measurements were performed locally down to 2K, and by collaborators at Waterloo in the range from 330mK to 1K. The heat capacity measurement confirmed the 2.9K transition and explored the relaxation time of the material. Cobalt niobate was found to have an exceptionally long relaxation time at low temperatures indicating strong spin-spin interactions. A sharp transition with zero applied field was found to become a broad, smooth feature at 2.9K when a small field was applied.</p> <p>We performed muSR measurements in zero, longitudinal and transverse field. The muSR results confirmed the long relaxation time found by the heat capacity measurements, which may reflect the coupling of the spin system to the lattice. Additionally, the material was never seen to statically order in zero or longitudinal field down to 700mK and up to 1T. The material was found to behave dynamically throughout all the field ranges.</p> / Master of Science (MSc)
|
Page generated in 0.0638 seconds