• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gravure de la grille en silicium pour les filières CMOS sub-0,1 µm

EL KORTOBI-DESVOIVRES, Latifa 17 November 2000 (has links) (PDF)
Ce travail de thèse s'inscrit dans le cadre des recherches avancées pour l'élaboration de la grille en silicium amorphe, pour les applications CMOS sub-0,1 µm. Cette étude a été menée sur la plate-forme de gravure du CNET, équipée de différents outils de caractérisation installés in situ. Dans un premier temps, nous avons développé un procédé de gravure à base de HBr/O2 permettant d'assurer une bonne anisotropie de gravure tout en ne générant aucun perçage de l'oxyde de grille très mince (< 2 nm). Au cours de l'optimisation de ce procédé, nous avons observé une augmentation de l'épaisseur de l'oxyde de grille. Grâce à différentes techniques d'analyses, nous avons montré que cette augmentation d'épaisseur est due à une oxydation et une amorphisation partielle du substrat de silicium sous l'oxyde de grille. Le deuxième volet de ce travail a porté sur une étude physico-chimique de la couche de passivation formée sur les flancs de la grille. Cette couche permet d'assurer l'anisotropie de gravure en bloquant toute gravure latérale. Par des analyses XPS, nous avons montré qu'elle se forme dès l'étape de gravure principale. Elle est constituée d'un 'sous' oxyde de silicium bromé. Pendant l'étape de surgravure, cette couche se densifie par substitution du brome par des atomes d'oxygène. Nous avons également montré que sa formation dépend fortement de la chimie utilisée, de l'énergie des ions, de la durée de la surgravure et de la dilution en oxygène. Des observations au microscope électronique à transmission ont révélé que cette couche est plus épaisse au sommet qu'au pied de la grille, favorisant ainsi l'apparition de défaut sous forme d'encoche au pied de la grille, le 'notching'.
2

Usinage des aciers prétraités à l'huile entière - effets physico-chimiques des additifs soufrés

Bierla, Aleksandra 24 September 2009 (has links) (PDF)
De nombreuses opérations d'usinage nécessitent la présence d'un fluide de coupe afin d'en assurer le succès du fait de la sévérité des sollicitations que subit l'outil. Le but de l'étude est d'identifier les performances de divers additifs soufrés dans les huiles entières, de sélectionner parmi eux l'additif soufré le plus efficace pour la coupe des métaux, ainsi que de comprendre leurs mécanismes d'action dans les différentes applications d'usinage. L'objectif de l'étude est donc d'analyser les mécanismes tribochimiques de lubrification mis en jeu dans les procédés d'usinage et d'optimiser la formulation du lubrifiant. L'influence des différents paramètres liés à la coupe est également étudiée afin d'apporter plus de connaissances sur l'action générale des lubrifiants dans le cas de l'usinage moderne.
3

Croissance épitaxiale d'oxydes "high-κ" sur silicium pour CMOS avancé : LaAlO3, Gd2O3, γ-Al2O3

Merckling, Clément 10 October 2007 (has links) (PDF)
La miniaturisation depuis 50 ans des composants, transistors MOSFET à base de silicium, dans les technologies CMOS est de plus en plus limité par l'apparition de phénomènes quantiques dans les dispositifs de taille sub-0,1 µm. L'épaisseur requise pour l'isolant de grille devenant trop faible, cela induit une très forte augmentation des courants de fuites à travers le diélectrique. Une solution pour résoudre ce problème est de remplacer la silice (SiO2), qui est l'isolant naturel du substrat de Si, par un autre matériau qui a une constante diélectrique plus élevée que celle de la silice. Avec ces oxydes « high-κ » on peut viser une épaisseur physique d'isolant plus élevée et donc diminuer les courants de fuites tout en maintenant la capacité surfacique du transistor constante. <br />Les solutions industrielles actuelles développées sont à base d'oxydes « high-κ » amorphes. Une alternative serait l'utilisation d'oxydes monocristallins épitaxiés directement sur silicium qui permettrait de retrouver les propriétés de l'oxyde massif et d'obtenir des interfaces abruptes sans présence de couches interfaciales. Cependant le choix du matériau est limité par le désaccord de maille avec le substrat et aussi par la compatibilité et la stabilité thermodynamique des oxydes vis-à-vis du Si. Les matériaux explorés dans cette thèse ont été LaAlO3 et Gd2O3 choisis pour leurs propriétés électroniques (constante diélectrique et discontinuités de bandes) et γ-Al2O3 choisi pour ses qualités thermodynamiques vis-à-vis du Si. La méthode d'élaboration utilisée a été l'épitaxie par jets moléculaires (EJM).<br />Nous avons tout d'abord commencé par étudier le système LaAlO3/Si. Après avoir défini les conditions optimales de croissance (température, pression d'oxygène et vitesse de croissance), par homoépitaxie (sur un substrat de LaAlO3(001)) et hétéroépitaxie (sur un substrat de SrTiO3(001)), nous avons exploré les possibilités de faire croître cet oxyde directement sur Si(001). N'ayant pas pu trouver de fenêtre de croissance compatible, une solution a été d'utiliser une fine couche interfaciale de SrO ou de SrTiO3 pour obtenir une phase solide de LaAlO3 sur Si. Cependant les limitations thermodynamiques de l'interface à base d'alcalino-terreux (Sr) rendent incompatible la réalisation de transistors CMOS. <br />Le deuxième oxyde étudié a été l'oxyde de gadolinium (Gd2O3). Si la croissance s'est révélée monodomaine et de très bonne qualité sur Si(111), nous avons observé une croissance bidomaine sur substrat de Si(001). Ceci provient de l'alignement des plans (110) de l'oxyde sur les plans (001) du Si, tournés de 90° à chaque marche de silicium, Nous avons alors montré que l'utilisation d'un substrat vicinal de Si(001) désorienté de 6° permet de favoriser qu'un seul domaine de Gd2O3. Malgré ses limitations (formation de silicate interfacial à hautes températures) le système Gd2O3/Si est actuellement considéré comme un des plus intéressants pour l'intégration dans les technologies CMOS.<br />Afin d'obtenir des interfaces abruptes et stables thermodynamiquement, nous avons exploré les possibilités offertes par l'oxyde γ-Al2O3. Après avoir mis en évidence la possibilité de faire croître un film fin de γ-Al2O3(001) pseudomorphe avec une interface cohérente, nous avons défini différents assemblages possibles combinant γ-Al2O3 et un oxyde « high-κ ». Une solution originale qui permet d'intégrer un oxyde « high-κ » cristallin sur Si avec une interface abrupte et stable a été proposée.
4

Etude et modélisation de l'interface graphite/électrolyte dans les batteries lithium-ion / Study and establishment of a model of the graphite/electrolyte interface in lithium-ion batteries

Chhor, Sarine 19 December 2014 (has links)
Cette thèse se positionne dans le domaine des batteries lithium-ion. Elle a pourobjectif de mieux comprendre le fonctionnement de l’électrode négative de graphiteen étudiant le processus de formation du film de passivation, couramment appeléSEI (Solid Electrolyte Interface) créé à l’interface avec l’électrolyte. Ce travail nousa conduit à proposer des modèles pouvant expliquer comment se forme la SEI et àidentifier les phénomènes qui entrent en jeu dans le fonctionnement de la batterie.La SEI résulte de la réaction entre l’électrode de graphite, les ions lithium et les moléculesorganiques de l’électrolyte qui survient lors du premier processus d’insertion.Elle est principalement composée des produits de décomposition de l’électrolyte etles ions lithium consommés ne sont plus échangeables. Elle est donc responsable dela capacité irréversible observée lors du premier cycle de formation, correspondantà la différence de capacité entre le processus d’insertion et le processus de désinsertion.Il est donc essentiel de mieux comprendre les paramètres qui l’influencentpour pouvoir ainsi la contrôler et limiter la perte irréversible de capacité. Les performancesen capacité de l’élément lithium-ion sont directement liées à cette valeurde capacité irréversible, elle doit être limitée afin de maximiser la quantité d’ionslithium échangée entre l’électrode négative et l’électrode positive. La stabilité dela SEI conditionne ensuite le comportement en cyclage de l’électrode au cours dutemps.Dans ce mémoire de thèse, nous avons choisi de caractériser le comportement del’électrode de graphite en faisant varier la nature de l’électrolyte et la taille desparticules de graphite tout en restant le plus proche possible du fonctionnementd’une vraie batterie. Au travers des techniques de caractérisations électrochimiques(cyclage galvanostatique, spectroscopie d’impédance) associées à des techniques decaractérisation de surface (spectroscopie de photoélectrons X, microscopie électroniqueà balayage), les résultats obtenus ont permis de proposer un nouveau modèlede formation de la SEI.Pour l’électrolyte, nous avons choisi de ne regarder que l’effet du solvant (le carbonatede propylène) et de l’additif (le carbonate de vinylène). Ces deux composésentrent dans la composition des électrolytes utilisés dans les éléments lithium-ioncommerciaux. Pour l’électrode de graphite, le choix des particules s’avère primordialpuisque chaque type de particules possède une chimie de surface spécifique (plans223basaux ou plans prismatiques) susceptible de réagir différemment vis-à-vis de l’électrolyte.Deux particules de graphite, de taille et de morphologie différentes, ont étéétudiées. Elles sont utilisées séparément en tant que matière active dans les électrodesnégatives des batteries lithium-ion. Notre spécificité est d’avoir préparé desélectrodes constituées par un mélange de ces deux particules et de les avoir ensuitecaractérisées en formation. L’application de conditions de fonctionnement différentescomme le régime de cyclage et la température d’essai ont mis en évidence les valeursidéales conduisant à minimiser la dégradation de l’électrolyte et à optimiser laqualité du film.Nous avons abouti, au travers de l’ensemble des méthodes de caractérisations misesen oeuvre, à une meilleure compréhension des mécanismes de formation du film depassivation permettant ainsi d’améliorer cette étape essentielle à la pérennité desperformances de l’électrode dans le temps. Ce travail a donc un réel impact auniveau industriel. Le modèle de formation proposé apporte un éclairage nouveau auprocessus de formation et peut permettre également d’aider en amont à la fabricationdes particules de graphite. / This work relates to the lithium ion battery field. The purpose of this study is tobetter understand the behavior of graphite electrodes by focusing on the formationof a passive layer named Solid Electolyte Interface (SEI) which is formed at thegraphite/electrolyte interface. This work has led us to put forward models whichcan explain the SEI formation and identify the reactions which take place in alithium ion battery.The SEI results from reactions between graphite electrode, lithium ions and organicmolecules from the electrolyte during the first charge of the lithium ion battery. It ismainly composed of decomposition products from the electrolyte. Consumed lithiumions can no longer be used in the next cycle. The SEI is therefore responsible for theirreversible capacity during the first formation cycle which is the charge loss betweenthe intercalation process and the deintercalation process. It is necessary to betterunderstand the impact of the formation conditions and other parameters in orderto control and limit the irreversible charge loss. Lithium ion battery performancesdepend on this irreversible capacity, this value has to be reduced in order to maximizethe amount of exchanged lithium ions between negative and positive electrodes. TheSEI stability will determine the electrode behavior upon cycling.In this thesis, we chose to study the graphite behavior by testing several electrolytecompositions and graphite particle sizes in electrochemical cells similar to areal battery. Electrochemical techniques (galvanostatic cycling and electrochemicalimpedance spectroscopy) and surface analyses (X-ray photoelectron spectroscopy,scanning electron microscopy) will be combined. These results helped us to developa new model of the SEI formation.For the electrolyte, we chose to study the effect of the solvent (propylene carbonate)and the additive (vinylene carbonate). Both components are commonly used inthe electrolyte for commercial lithium ion batteries. For the graphite electrode, thechoice of graphite particles is essential because each graphite family has its ownsurface chemistry (basal and prismatic surfaces) which can react in many wayswith the electrolyte. Two graphite particles, with specific sizes and morphologiesare studied. They are separately used as active materials for negative electrodes inlithium ion batteries. Our unique approach is to prepare graphite electrodes basedon a mix of both particles with various compositions and then test the electrode225performances. After testing several formation conditions such as the cycling rateand the temperature, we found the ideal formation conditions for minimizing theelectrolyte decomposition and optimizing the film quality.Finally, based on all the characterization methods, we came to a better understandingof the film formation process. In this way, we have improved this essentialpreliminary step which can now lead to more durable cycling performances overtime. This study can have a major impact on the industrial level. The formationmodel cast a new light on the formation process and can therefore help to makeefficient graphite electrodes.

Page generated in 0.0876 seconds