• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quantification of emissions in the ICT sector – a comparative analysis of the Product Life Cycle Assessment and Spend-based methods. : Optimal value chain accounting (Scope 3, category 1)

Rajesh Jha, Abhishek kumar January 2022 (has links)
Considering the rapid increase in the ICT (Information & Communication Technology) products in use, there is a risk of an increase in GHG emissions and electronic waste accumulation in the ICT sector. Therefore, it becomes important to account for the emissions in the ICT sector in order to take steps to mitigate them. There are several methods put forward under ETSI, ITU-T, GHG protocol, etc., which can be used to measure the emissions in the ICT sector. Two such methods are Product Life Cycle Assessment (PLCA) and Spend-based, which are used in this study to account for scope 3, category 1 emissions in the ICT sector. Scope 3, category 1 emissions are released during the raw material acquisition and part production phase of the ICT product’s life cycle and account for a major portion of the overall emissions. As the ICT sector is a very huge field of study in itself, two ICT products, namely smartphones and laptops, are considered in this study to calculate their overall scope 3, category 1 emissions. A list of influential components in smartphones and laptops is defined to be included in the Excel Management Life Cycle Assessment (EMLCA) tool to calculate the scope 3, category 1 emissions. A comprehensive comparison between PLCA and Spend-based methods is also studied during the process of calculating their emissions. These observations are then used to make critical analyses and compare the two methods under results and discussions based on various parameters described under them. Both the methods were found to be suitable for calculating the emissions, with some uncertainty, although the Spend-based method was a quicker approach to do so. The PLCA method, although more complex, was found to be more suitable for ICT product eco-design. Both methods required a different set of primary data and were sensitive to various components in smartphones and laptops. This study illustrates the parameters that affect PLCA and Spend-based methods and discusses the pros and cons of them depending on the situations they are used in.
12

AWS Flap Detector: An Efficient way to detect Flapping Auto Scaling Groups on AWS Cloud

Chandrasekar, Dhaarini 07 June 2016 (has links)
No description available.
13

The opportunities of applying Artificial Intelligence in strategic sourcing / Möjligheterna med att applicera Artificiell Intelligens i strategiskt inköp

Karlsson, Frida January 2020 (has links)
Artificial Intelligence technology has become increasingly important from a business perspective. In strategic sourcing, the technology has not been explored much. However, 67% of CPO:s in a survey showed that AI is one of their top priorities the next 10 years. AI can be used to identify patterns, predict prices and provide support in decision making. A qualitative case study has been performed in a strategic sourcing function at a large size global industrial company where the purpose has been to investigate how applicable AI is in the strategic sourcing process at The Case Company. In order to achieve the purpose of this study, it has been important to understand the strategic sourcing process and understand what AI technology is and what it is capable of in strategic sourcing. Based on the empirical data collection combined with literature, opportunities of applying AI in strategic sourcing have been identified and key areas for an implementation have been suggested. These include Forecasting, Spend Analysis & Savings Tracking, Supplier Risk Management, Supplier Identification & Selection, RFQ process, Negotiation process, Contract Management and Supplier Performance Management. These key areas have followed the framework identified in the literature study while identifying and adding new factors. It also seemed important to consider factors such as challenges and risks, readiness and maturity as well as factors that seems to be important to consider in order to enable an implementation. To assess how mature and ready the strategic sourcing function is for an implementation, some of the previous digital projects including AI technologies have been mapped and analysed. Based on the identified key areas of opportunities of applying AI, use cases and corresponding benefits of applying AI have been suggested. A guideline including important factors to consider if applying the technology has also been provided. However, it has been concluded that there might be beneficial to start with a smaller use case and then scale it up. Also as the strategic sourcing function has been establishing a spend analytics platform for the indirect team, there might be a good start to evaluate that project and then apply AI on top of the existing solution. Other factors to consider are ensuring data quality and security, align with top management as well as demonstrate the advantages AI can provide in terms of increased efficiency and cost savings. The entire strategic sourcing function should be involved in an AI project and the focus should not only be on technological aspect but also on soft factors including change management and working agile in order to successfully apply AI in strategic sourcing. / Artificiell Intelligens har blivit allt viktigare ur ett affärsperspektiv. När det gäller strategiskt inköp har tekniken inte undersökts lika mycket tidigare. Hursomhelst, 67% av alla tillfrågade CPO:er i en enkät ansåg att AI är en av deras topprioriteringar de kommande tio åren. AI kan exempelvis identifiera mönster, förutspå priser samt ge support inom beslutsfattning. En kvalitativ fallstudie har utförts i en strategisk inköpsfunktion hos ett globalt industriföretag där syftet har varit att undersöka hur tillämpbart AI är i strategiskt inköp hos Case-Företaget. För att uppnå syftet med denna studie har det varit viktigt att förstå vad den strategiska inköpsprocessen omfattas av samt vad AI-teknologi är och vad den är kapabel till inom strategiskt inköp. Därför har litteraturstudien gjorts för att undersöka hur man använt AI inom strategiskt inköp tidigare och vilka fördelar som finns. Baserat på empirisk datainsamling kombinerat med litteratur har nyckelområden för att applicera AI inom strategiskt inköp föreslagits inkluderat forecasting, spendanalys & besparingsspårning, riskhantering av leverantörer, leverantörsidentifikation och val, RFQ-processen, förhandlingsprocessen, kontrakthantering samt uppföljning av leverantörsprestation. Dessa nyckelområden har följt det ramverk som skapats i litteraturstudien samtidigt som nya faktorer har identifierats och lagts till då de ansetts som viktiga. För att tillämpa AI i strategiska inköpsprocessen måste Case-Företaget överväga andra aspekter än var i inköpsprocessen de kan dra nytta av AI mest. Faktorer som utmaningar och risker, beredskap och mognad samt faktorer som ansetts viktiga att beakta för att möjliggöra en implementering har identifierats. För att bedöma hur mogen och redo den strategiska inköpsfunktionen hos Case-Företaget är för en implementering har några av de tidigare digitala projekten inklusive AI-teknik kartlagts och analyserats. Det har emellertid konstaterats att det kan vara fördelaktigt för strategiskt inköp att börja med ett mindre användningsområde och sedan skala upp det. Eftersom strategiska inköpsfunktionen har implementerat en spendanalys plattform kan det vara en bra start att utvärdera det projektet och sedan tillämpa AI ovanpå den befintliga lösningen. Andra faktorer att beakta är att försäkra datakvalitet och säkerhet, involvera ledningen samt lyfta vilka fördelar AI kan ge i form av ökad effektivitet och kostnadsbesparingar. Därtill är det viktigt att inkludera hela strategiska inköps-funktionen samt att inte endast beakta den tekniska aspekten utan också mjuka faktorer så som change management och agila metoder.

Page generated in 0.0315 seconds