Spelling suggestions: "subject:"sphéroïdes"" "subject:"sphéroïdales""
1 |
Nanomécanismes de déformation des polymères semi-cristallins : étude in situ par microscopie à force atomique et modélisation / Nano-scale deformation mechanisms in semi-crystallin polymers : in situ atomic force microscopy study and modelingDétrez, Fabrice 03 December 2008 (has links)
Les mécanismes de déformation de trois polymères semi-cristallins à morphologie sphérolitiques ont été étudiés par microscopie à force atomique in situ à l'aide d'une machine de traction. Le polyamide 6, le polybutène et le polycaprolactone utilisés lors de cette étude se déforment tous par fragmentation lamellaire. Des micro-craquelures ont également été observées dans le polybutène. Ces deux mécanismes s'amorcent dès la fin du domaine élastique. Ils sont tous deux à l'origine d'une déformation permanente et d'une dégradation des propriétés mécaniques. Ces constations expérimentales ont conduit à l'hypothèse d'un couplage entre plasticité et endommagement. Après avoir identifié la contribution visqueuse pour chaque matériau, l'endommagement et la déformation plastique ont été mesurés par des essais de traction charge/décharge. Il s'est avéré que dans les trois matériaux de l'étude, l'évolution du dommage en fonction de la déformation plastique suit une unique loi malgré les nombreuses différences structurales (épaisseur des lamelles, diamètres des sphérolites, température de transition vitreuse ... ). Une loi de comportement a été établie d'une part sur le concept qu'un polymère semi-cristallin est constitué d'un réseau macromoléculaire bridé par la structure cristalline et d'autre part de la constatation que la destruction de la structure cristalline induit un endommagement régi par la loi précédemment identifiée. Cette loi a été implémentée dans un code de calcul éléments finis. Elle permet de reproduire très convenablement les essais de traction monotones et cycliques de l'étude et de prédire le comportement en relaxation des polymères semi-cristallins. / The aim of this work is to study the nano-scale deformation mechanisms within the spherulitic structure of semi-crystalline polymers. The deformation mechanisms are imaged by atomic force microscopy. The originality of this work is the use of a home-made tensile drawing stage under the AFM head in order to perform in situ tensile tests. The observations performed on several semi-crystalline polymers (polyamide 6, polybutene, polycaprolactone) revealed fragmentation of crystalline lamellae and micro-crazing. These mechanisms appear from the end of elastic stage, and induce permanent deformation and degradation of mechanical properties. These experimental observations enable assuming that there is a coupling between plasticity and damage. The viscous contribution is first identified, then subtracted from the data of cyclic tensile tests in order to assess the damage and the plastic deformation. The damage evolution follows the same law for the various materials in spite of their large structural differences (lamellar thickness, spherulite diameter, glass transition temperature ... ). The mechanical behavior modeling based on the concept that the semi-crystalline polymers consist of a macromolecular network flanged by the crystalline structure. The behavior law has been developed with this concept including the damage law previously identified. This law has been implemented in a finite element program. Good fits of the experimental monotonic and cyclic tensile tests have been obtained together with fairly good predictions of the relaxation behavior of three studied materials.
|
2 |
Mobilité moléculaire dans des systèmes polymères complexes anisotropes et confinés / Molecular dynamics in complex polymer systems : from anisotropy to confinement effectsMonnier, Xavier 03 October 2017 (has links)
L’objet de ce travail est d’étudier l’influence de l’anisotropie structurale, induite lors de la mise en forme d’un Polylactide (PLA), sur les dynamiques moléculaires de la phase amorphe. Deux procédés de mise en oeuvre sont retenus : l’électrofilage et la cristallisation induite par flux. Le premier permet d’aboutir à un système non-cristallin, lorsque le deuxième permet d’aboutir à un système semi-cristallin. Pour chaque système, une étude microstructurale est préalablement réalisée pour mettre en avant l’anisotropie structurale induite lors de la mise en oeuvre. Pour ce faire différentes techniques d’analyses sont utilisées : microscopie optique, microscopie électronique, diffraction des rayons X, calorimétrie à balayage différentielle (DSC) et calorimétrie à balayage rapide (FSC). L’utilisation de la FSC s’avère précieuse. Du fait des vitesses extrêmement rapide (1000 K.s-1) et de la diminution importante de la masse (dizaine de nanogrammes), la transition vitreuse et la cinétique de vieillissement physique sont au préalable étudiées dans le cas d’un PLA amorphe. Il est montré que les vitesses de refroidissement atteignable en FSC permettent d’accélérer les cinétiques de vieillissement physique. Les dynamiques moléculaires sont ensuite étudiées à travers le concept de coopérativité et le phénomène de vieillissement physique. Il est montré que l’orientation préférentielle induite dans le système non-cristallin aboutit à la formation de mésophase qui augmente la coopérativité, autrement dit les interactions intermoléculaires. Dans le cas du système semi-cristallin, les dynamiques moléculaires sont influencées par le couplage amorphe/cristal et le confinement des cristaux, et non pas par l’anisotropie structurale induite avant cristallisation. / The aim of this work is to investigate the molecular dynamics of Polylactide (PLA) subjected to structural anisotropy during its processing. To do so, two experimental set-ups were used: electrospinning and flow induced crystallization. The first one leads to non-crystalline system, while the second one leads to semi-crystalline system. For each system, the microstructure is investigated to highlight the structural anisotropy induced during the processing. Different experimental techniques are used: optical microscopy, electronic microscopy, X-ray diffraction, differential scanning calorimetry (DSC) and fast scanning calorimetry (FSC). FSC proves to be useful. Due to the high scanning rates (1000 K.s-1) and the decrease of the sample mass (few tens of nanogrammes), glass transition and physical aging kinetics are beforehand investigated in the case of a wholly amorphous PLA. It is shown that high cooling rates available by FSC allow to accelerate physical aging kinetics. Molecular dynamics are then investigated through concept of cooperativity and phenomenon of physical aging. It is shown that preferential orientation induced during electrospinning leads to the formation of mesophase, which increase cooperativity, namely the intermolecular interactions. With regard to semi-crystalline system, molecular dynamics are only affected by the coupling between amorphous/crystal and the confinement effect of the crystals, rather than the structural anisotropy induced before the crystallization step.
|
Page generated in 0.0513 seconds