• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 26
  • 16
  • 15
  • 15
  • 15
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Design and in vitro characterization of lipids with a pH-sensitive conformational switch and their liposomes for anticancer drug delivery

Zhao, Shen 01 January 2018 (has links) (PDF)
The traditional anticancer drugs are distributed in vivo through systemic blood circulation with a very small portion reaching the tumor site. Targeted drug delivery systems are developed in efforts to concentrate the drug molecules in the tissue of interest while reducing the drug distribution to healthy tissues to reduce the side effects. Liposomes are colloidal systems composed of amphiphilic molecules that assemble into vesicle structures in aqueous media. They are common carriers for targeted drug delivery with the advantages of low toxicity, low immunogenicity and the ability of encapsulating both lipophilic and hydrophilic drugs. Prior research indicated the advantages of triggered release in drug delivery systems. As a specific example, a series of trans-2-aminocyclohexanol based lipids (flipids) have been reported to illustrate a promising strategy to render pH-triggered drug delivery systems: pH-triggered conformational switch. Based on the foregoing, we hypothesize that incorporation of lipids with a pH-sensitive conformational switch and a long-saturated lipid tail can improve the anticancer activities of stealth liposomes. In this study, six new flipids with C-16 saturated hydrocarbon tails were designed. Such lipids were synthesized with high yields by introducing a catalyst (Copper (II) tetrafluoroborate) at a key step of the synthetic scheme. pH-sensitive liposomes (fliposomes) composed of flipids were prepared and loaded with the anticancer drug doxorubicin with high encapsulation efficiency. The physicochemical properties of doxorubicin-loaded fliposomes were characterized and their pH-dependent leakage were investigated. The results showed that among all groups fliposomes containing the C-16 trans-2-morpholylcyclohexanol-based flipid (Mor-C16) exhibited the largest increase of release as the pH dropped form pH 7.4 to 6.0, indicating its good potential of serving as a component in pH-triggered drug delivery systems. Three-dimensional multicellular spheroids (3D MCS) are self-assembled microscale tissue analogs in vitro. They better mimic the native and complex tumor microenvironment than the conventional two-dimensional cell culture systems. In this dissertation study, 3D MCS of six different human cancer cells were successfully cultured and their growing conditions were optimized to obtain 3D MCS of tight structure and reproducible size. The constructed 3D MCS carried heterogeneously distributed live and apoptotic cells as well as acidic inside pH based on confocal microscopic imaging studies. The penetration of doxorubicin-loaded Mor-C16 fliposomes into 3D MCS was imaged by confocal microscopy in comparison to doxorubicin-loaded non pH-sensitive liposomes and free doxorubicin. The anticancer activities of doxorubicin-loaded Mor-C16 fliposomes against 3D MCS of three different cell lines was also evaluated by cell viability. Both the fliposome and the non pH-sensitive liposome formulations more efficiently penetrated into two of the three types of 3D MCS compared to free doxorubicin after 4h drug exposure. However, doxorubicin-loaded Mor-C16 fliposome imposed higher cytotoxicity to all three types of 3D MCS compared to doxorubicin-loaded non pH-sensitive liposome over 72 h drug exposure. Taken together, we propose that fliposomes achieved superior activity against 3D MCS by efficient penetration into 3D MCS, followed by enhanced release of the anticancer drug doxorubicin.
42

A systems biology approach to target identification using three-dimensional multi-cellular tumour spheroids (MCTS). Regio-specific molecular dissection of gene expression, protein expression and functional activity in 3D MCTS.

McMahon, Kelly M. January 2011 (has links)
Within solid tumours, a microenvironment exists that causes resistance to chemotherapy. New drugs that target cells within this microenvironment are required, the first step in this process being the identification of new targets. The aim of this thesis was to characterise changes in the transcriptome and proteome within specific regions of multicell-tumour spheroids (MCTS), an experimental model that mimics many of the features of the tumour microenvironment. HT29 MCTS were separated by sequential trypsinisation into 3 main regions; the outer surface layer (SL) the peri-necroric region (PN) and the necrotic core (NC). Using an iTRAQ quantitative proteomics approach, the proteome of the different MCTS regions was investigated. A 2 dimensional separation approach using Agilent¿s OffGel system and RP-nano HPLC was incorporated prior to MS analysis. MS analysis was done using both MALDI-TOF-TOF (Bruker Ultraflex II) and ESI-Q-TOF (Agilent 6530 QTOF LC/MS) instruments. Gene expression profiles of the different MCTS were investigated and compared using Agilent¿s one-color oligonucleotide based microarrays. Transcriptomic and proteomic analysis identified several key differences in the proteins involved in cell metabolism between the SL and PN/NC regions. Similar metabolic changes were also noted between autophagic and normal monolayer cells. Many highlighted proteins represented established cancer associated proteins. Interestingly, a number of proteins were highlighted which have no previous association with cancer and may upon further validation, provide attractive leads for therapeutic intervention.
43

Differential membrane-type matrix metalloproteinase expression in phenotypically defined breast cancer cell lines: Comparison of MT-MMP expression in environmentally-challenged 2D monolayer cultures and 3D multicellular tumour spheroids

Kashtl, Ghasaq J. January 2018 (has links)
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases capable of digesting the extracellular matrix (ECM), which is essential for tissue structure and transmitting messages between cells. MMPs play an important role in cancer, controlling cell migration, proliferation, apoptosis, regulation of tumour expansion, angiogenesis and invasion. Previous research has indicated high expression of MT1-MMP in breast cancers suggesting a potential role in tumour progression. Our results confirm that 3D multicellular tumour spheroids (MCTS) using phenotype-specific breast cancer cell lines are a valuable experimental model of the tumour microenvironment. Optimisation of MCTS culture growth conditions using different breast cancer cell lines (MCF-7, T47D, MDA-MB-468 and MDA-MB-231) was performed. Unexpected detection of MT1-MMP in MCF-7 MCTS warranted further investigation. MT1-MMP expression in different micro-environmental conditions, including hypoxia and nutrient deprivation (serum-free induced autophagy) were measured in MCF-7 monolayer cultures and MCTS models using immunofluorescence (IF), immunohistochemistry (IHC) and western blot (WB). MT1-MMP expression was rapidly and irreversibly up-regulated in MCF-7 breast cancer cells under conditions of stress (hypoxia and autophagy) compared to normal conditions suggesting an important role of the culture environment on cells behaviour and protein expression. We employed isobaric tags for relative and absolute quantitation (iTRAQ) technology to correlate MT1-MMP increase with proteomic profiles in MCF-7 breast cancer cell grown under hypoxic, serum-free and 3D MCTS conditions. More than 3500 proteins were identified, which were clustered into groups based on response to unique or shared microenvironment changes. Hypoxic monolayer and spheroid cells exhibited changes in anaerobic metabolism and lipid synthesis, respectively, whereas autophagy resulted in up-regulation of cellular component disassembly. The result indicated multiple drivers of MT1-MMP expression in MCF-7 cells. / Al-Mstansiriya University, Iraq
44

Multicellular Tumor Spheroids as a Model to Study Tumor Cell Adaptations within a Hypoxic Environment

Riffle, Stephen January 2017 (has links)
No description available.
45

The Influence of 3D Cell Organization in Tumor Spheroid on Natural Killer Cell Infiltration and Migration / Inverkan av 3D-cellorganisation i tumörsfäroid på naturlig mördarcellinfiltration och migration

Morrone, Luigi January 2020 (has links)
Natural Killer cells are a type of lymphocyte belonging to the innate immune system and they operate cell-mediated cytotoxicity and release of pro-inflammatory cytokines against cancerous cells. However, in vivo testings have shown a reduced activity of NK cells against solid tumors probably due to the negative influence of the immunosuppressive tumor microenvironment. Multicellular tumor spheroids may constitute an advantageous model in cancer biology for studying the mechanisms behind cancer immune editing since it more closely mimics the complexity of the human body compared with the 2D model counterpart. This study investigated the interaction between NK cells isolated from blood and tumor spheroids obtained from A498 renal carcinoma cells, using light-sheet microscopy imaging which allows satisfactory cell tracking in the inner layers of the spheroids. NK cells not only indeed interact with tumor spheroids, but many of them were able to penetrate the spheroids inducing some changes in the structure of the latter. NK cells were also tracked over time, displaying the migration path and calculating the speed. The fluorescence intensity of the NK cells was found reduced as soon as they penetrate the spheroid but, conversely, the speed seems to increase inside the spheroid, a possible sign of the fallibility of the tracking algorithm in this specific case. We propose solutions for more sophisticated future implementations, involving the use of marks during the experimental phase and drift corrections at the data analysis level.
46

Sphingosine-1-Phosphate and Stromal Cells Contribute to an Aggressive Phenotype of Ovarian Cancer

Guinan, Jack Henry 26 June 2017 (has links)
Metastasis remains the largest contributor for ovarian cancer mortality. The five-year survival rate decreases dramatically as the disease advances from the primary tumor site to other organ sites within the peritoneal cavity. Thus, characterizing the mechanisms behind this metastatic potential may better elucidate the molecular mechanisms of ovarian cancer progression and may reveal novel targets for preventative and therapeutic treatments. Sphingosine-1-phosphate (S1P) is a critical secondary messenger responsible for many pro-cancer signals, e.g., proliferation, angiogenesis, inflammation, anti-apoptosis, and others. While S1P's role in the aggressive profile of many other cancers is well defined, its function in ovarian cancer development is less understood. The concentration of S1P is significantly increased in the ascites of women with malignant ovarian cancer, suggesting a role in ovarian cancer progression. This study aims to understand the importance of S1P in ovarian cancer metastasis. Using our well-characterized murine cell model for progressive ovarian cancer, we investigate the impact of S1P on ovarian cells and their interactions with the stromal vascular fraction recruited from the adipose tissue in culture conditions that mimic the physiologic environment of the peritoneal cavity. These studies will provide a mechanistic link of obesity, inflammation, and the increased risk of obese women to develop and die from ovarian cancer and identify signaling events as targets for interventions. / Master of Science
47

Experimental Determination of the Scattering Cross-section of Ogives and Prolate Spheroids at Microwave Frequencies

Rhoads, Wayne C. 01 1900 (has links)
Because of the great difficulty of obtaining exact numerical values of cross-section, and because of the inherent uncertainties in interpreting and evaluating the approximate methods, accurate experimental cross-section data would be extremely useful to the radar engineer. It was with this purpose in mind that the present long-range research program in microwave scattering was undertaken. Of immediate interest were the scattering properties of the prolate spheroid, the ogive (formed by rotating the minor segment of a circle around the chord), and, for comparison, the long cylinder.
48

Optimisation de la thérapie photodynamique par la nanovectorisation du photosensibilisateur mTHPC à l’aide de vésicules extracellulaires / Optimization of photodynamic therapy by the nanovectorization of mTHPC photosensitizer using extracellular vesicles

Millard, Marie 14 December 2018 (has links)
La thérapie photodynamique (PDT) est un traitement alternatif à la chirurgie en oncologie utilisant un photosensibilisateur (PS), la lumière visible et l’oxygène moléculaire. La méta-tétra(hydroxyphényl)chlorine (mTHPC) est l’un des PS de deuxième génération les plus utilisés en clinique en raison de son absorption dans le rouge lointain et d’un rendement quantique en 1O2 élevé. De par sa nature hydrophobe, la mTHPC est partiellement agrégée dans la circulation sanguine diminuant sa biodistribution. Dans le but d’améliorer la sélectivité tumorale de la mTHPC, différentes stratégies de vectorisation ont été développées. La formulation liposomale de mTHPC non PEGylée (Foslip®) améliore la biodistribution ainsi que les propriétés pharmacocinétiques de la mTHPC. Cependant, une rapide destruction des liposomes en circulation ainsi qu’une rapide libération de la mTHPC sont des inconvénients majeurs. Une alternative possible est l’utilisation de vésicules extracellulaires (VE). Dérivées des cellules, les VE possèdent une stabilité naturelle dans la circulation sanguine et une capacité à transporter et délivrer leur contenu de manière spécifique aux cellules cancéreuses. Cette vectorisation est intéressante en PDT en raison d’une importante capacité d’encapsulation des porphyrines. Le but de cette étude était d’évaluer l’intérêt des VE en tant que nanovecteur de la mTHPC dans divers modèles précliniques comparé au Foslip®. Contrairement au Foslip®, l’intégrité membranaire des VE est conservée en présence de 20% de plasma. In vitro, les mTHPC-VE ont montré une internalisation cellulaire par un mécanisme actif d’endocytose. Dans un modèle cellulaire en 3D de sphéroïdes multicellulaires, les mTHPC-VE ont permis d’accroitre l’accumulation cellulaire, la diffusion au sein de ce modèle ainsi que l’efficacité PDT. In vivo, les mTHPC-VE apparaissent plus efficace au niveau PDT avec un retard de croissance tumorale significativement augmenté. En conclusion, l’intégration de la mTHPC au sein des VE améliore l’efficacité PDT dans les différents modèles d’étude. Le suivi des mTHPC-VE à l’aide d’un traceur radioactif chez la souris ainsi que l’étude du ciblage de la vascularisation tumorale seront étudiés dans la suite du travail / Photodynamic therapy (PDT) is an alternative treatment to surgery in oncology using photosensitizer (PS), light and oxygen. Meta-tetra(hydroxylphenyl)chlorin (mTHPC) is one of the most used PS in clinics due to its high absorption in the deep red and high 1O2 quantum yield. In order to improve the mTHPC tumor selectivity different attempts of nanovectorisation were conducted. Non-PEGylated liposomal mTHPC (Foslip®) increase biodistribution and pharmacokinetic properties. However, the rapid liposome destruction during circulation and rapid mTHPC release are obvious shortcomings. Alternatively, mTHPC vectorization could be realized by extracellular vesicles (EVs). Derived from the cell, EVs possess a natural stability in bloodstream and ability to transport and deliver cargo molecules into cancer cells. This formulation is interesting for PDT due to the ability to encapsulate porphyrins. The aim of the present study was to determine the interest of EVs as mTHPC nanocarriers in various preclinical models compared to Foslip®. In contrast to Foslip®, membrane integrity of mTHPC-EVs was conserved in 20% of plasma. In vitro, mTHPC-EVs showed cellular internalization by an active endocytosis mechanism. In a 3D model of spheroids, mTHPC-EVs have improved cellular uptake, better diffusion inside spheroid and increased PDT efficacy. In vivo, mTHPC-EVs appeared to be more potent in terms of PDT efficacy, with a tumor growth delay significantly higher. In conclusion, integration of mTHPC in EVs improves PDT efficacy in various preclinical models. The tracking of mTHPC-EVs using a radioactive tracer in xenografted rodents as well as the study of vascularization targeting will be studied in the next step of this work
49

Transportní studie in vitro na 2D a 3D buněčné úrovni / Transport studies in vitro on 2D and 3D cellular level

Urbanová, Johana January 2017 (has links)
in Hradec Králové Student: Johana Urbanová Supervisor: PharmDr. Jana Mandíková, Ph.D. = 38.02 μM), lowest indometacin μM
50

Testing Coagulation Potential of Extracellular Vesicles Derived from Aortic Stenosis Patients on Human Cardiac Spheroids

Nor Fuad, Muhammad Nafiz Ikhwan Bin January 2023 (has links)
Cardiovascular diseases have always been the leading cause of global morbidity and mortality. Aortic stenosis, which is a kind of cardiovascular disease has a high prevalence in elderlies that are 75 years and older. Currently, the only available treatment would be valve replacement surgery. Recently, a few studies have risen regarding the potential of extracellular vesicles to reduce the effects of aortic stenosis, hence allowing patients to opt for a non-life-threatening treatment in comparison to a surgical one. The goal within this study is to determine the pro-coagulability of extracellular vesicles (EVs) that were endogenously derived from human blood (patients and healthy individuals) and their effect on the coagulation cascade. This study was performed on cardiac spheroids that were formed through seeding human aortic endothelial cells in an ultra-low attachment 96-well plate for 96 hours. Spheroids were challenged with tumour necrosis factor-alpha (TNFα) for 24 hours prior to EVs incubation for 48 and 72 hours. The effects of EVs on these spheroids were observed in terms of their ability to induce tissue factor activity. There was no significant difference in the tissue factor activity between spheroids incubated with patient derived EVs or healthy individual derive EVs irrespective of TNFα challenge. To conclude, the results of this study were not significant to stipulate that extracellular vesicles are procoagulant. Hence, further research regarding their ability to reduce or rescue the effects of cardiovascular diseases needs to be performed.

Page generated in 0.1161 seconds