Spelling suggestions: "subject:"spin hamiltonians"" "subject:"spin hamiltonianos""
1 |
Influência da reorientação de spin nas propriedades termomagnéticas dos compostos da série Ho1-yGdyAl2 / Spin reorientation influence in the magneto-thermal properties of Ho1-yGdyAl2Luiz Eduardo de Lima e Silva 20 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho foram estudadas as propriedades estruturais e termomagnéticas dos pseudobinários Ho1-yGdyAl2, através de abordagens experimentais e teóricas. A parte experimental envolveu a preparação de cinco amostras, com as concentrações y = 0, 0,25, 0,5, 0,75 e 1, assim como medidas de magnetização, calor especifico e da variação adiabática da
temperatura. Na parte teórica usamos um hamiltoniano modelo que leva em consideração a interação dos íons com o campo magnético aplicado, com o campo elétrico cristalino e a troca
entre os íons magnéticos. A entropia da rede foi considerada na aproximação de Debye e a entropia eletrônica na aproximação do gás de elétrons livres. A influência das reorientações de spin, espontâneas e induzidas pelo campo magnético, na magnetização e no calor especifico foram investigadas sistematicamente tanto a partir de dados experimentais quanto teoricamente. Também obtemos resultados teóricos para a variação de entropia e variação adiabática da temperatura alterando a intensidade ou a direção do campo magnético. / In this work the structural and thermomagnetic properties of the pseudobinaries Ho1-yGdyAl2 have been studied by experimental and theoretical approaches. The experimental part included the preparation of five samples, with concentrations y = 0, 0,25, 0,5, 0,75 and 1, as well as magnetization, specific heat and adiabatic temperature change measurements. In the theoretical part we used a model Hamiltonian which includes the interaction of the ions with the applied magnetic field, the crystalline electrical field and exchange interactions with others magnetic ions. The lattice entropy has been considered within Debyes approach and the
electronic entropy as that of a free electron gas. The spin reorientation influence, spontaneous and magnetic field induced ones, in magnetization and specific heat has been systematically investigated either from experimental data as well as theoretically. We have also obtained theoretical results for the isothermal entropy change and the adiabatic temperature change by modifying either the magnetic field strength or its direction.
|
2 |
Influência da reorientação de spin nas propriedades termomagnéticas dos compostos da série Ho1-yGdyAl2 / Spin reorientation influence in the magneto-thermal properties of Ho1-yGdyAl2Luiz Eduardo de Lima e Silva 20 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho foram estudadas as propriedades estruturais e termomagnéticas dos pseudobinários Ho1-yGdyAl2, através de abordagens experimentais e teóricas. A parte experimental envolveu a preparação de cinco amostras, com as concentrações y = 0, 0,25, 0,5, 0,75 e 1, assim como medidas de magnetização, calor especifico e da variação adiabática da
temperatura. Na parte teórica usamos um hamiltoniano modelo que leva em consideração a interação dos íons com o campo magnético aplicado, com o campo elétrico cristalino e a troca
entre os íons magnéticos. A entropia da rede foi considerada na aproximação de Debye e a entropia eletrônica na aproximação do gás de elétrons livres. A influência das reorientações de spin, espontâneas e induzidas pelo campo magnético, na magnetização e no calor especifico foram investigadas sistematicamente tanto a partir de dados experimentais quanto teoricamente. Também obtemos resultados teóricos para a variação de entropia e variação adiabática da temperatura alterando a intensidade ou a direção do campo magnético. / In this work the structural and thermomagnetic properties of the pseudobinaries Ho1-yGdyAl2 have been studied by experimental and theoretical approaches. The experimental part included the preparation of five samples, with concentrations y = 0, 0,25, 0,5, 0,75 and 1, as well as magnetization, specific heat and adiabatic temperature change measurements. In the theoretical part we used a model Hamiltonian which includes the interaction of the ions with the applied magnetic field, the crystalline electrical field and exchange interactions with others magnetic ions. The lattice entropy has been considered within Debyes approach and the
electronic entropy as that of a free electron gas. The spin reorientation influence, spontaneous and magnetic field induced ones, in magnetization and specific heat has been systematically investigated either from experimental data as well as theoretically. We have also obtained theoretical results for the isothermal entropy change and the adiabatic temperature change by modifying either the magnetic field strength or its direction.
|
3 |
Hydrogen bond topology: order/disorder transitions in ice and the behavior of defects in a disordered ice latticeKnight, Christopher J. 31 August 2009 (has links)
No description available.
|
4 |
Theoretical Studies of Two-Dimensional Magnetism and Chemical BondingGrechnyev, Oleksiy January 2005 (has links)
<p>This thesis is divided into two parts. In the first part we study thermodynamics of the two-dimensional Heisenberg ferromagnet with dipolar interaction. This interaction breaks the conditions of the Mermin-Wagner theorem, resulting in a finite transition temperature. Our calculations are done within the framework of the self-consistent spin-wave theory (SSWT), which is modified in order to include the dipolar interaction. Both quantum and classical versions of the Heisenberg model are considered.</p><p>The second part of the thesis investigates the chemical bonding in solids from the first principles calculations. A new chemical bonding indicator called balanced crystal orbital overlap population (BCOOP) is developed. BCOOP is less basis set dependent than the earlier indicators and it can be used with full-potential density-functional theory (DFT) codes. We apply BCOOP formalism to the chemical bonding in the high-T_c superconductor MgB2 and the theoretically predicted MAX phase Nb3SiC2. We also study how the chemical bonding results in a repulsive hydrogen–hydrogen interaction in metal hydrides. The role of this interaction in the structural phase transition in Ti3SnHx is investigated.</p>
|
5 |
Theoretical Studies of Two-Dimensional Magnetism and Chemical BondingGrechnyev, Oleksiy January 2005 (has links)
This thesis is divided into two parts. In the first part we study thermodynamics of the two-dimensional Heisenberg ferromagnet with dipolar interaction. This interaction breaks the conditions of the Mermin-Wagner theorem, resulting in a finite transition temperature. Our calculations are done within the framework of the self-consistent spin-wave theory (SSWT), which is modified in order to include the dipolar interaction. Both quantum and classical versions of the Heisenberg model are considered. The second part of the thesis investigates the chemical bonding in solids from the first principles calculations. A new chemical bonding indicator called balanced crystal orbital overlap population (BCOOP) is developed. BCOOP is less basis set dependent than the earlier indicators and it can be used with full-potential density-functional theory (DFT) codes. We apply BCOOP formalism to the chemical bonding in the high-T_c superconductor MgB2 and the theoretically predicted MAX phase Nb3SiC2. We also study how the chemical bonding results in a repulsive hydrogen–hydrogen interaction in metal hydrides. The role of this interaction in the structural phase transition in Ti3SnHx is investigated.
|
6 |
Quantum Simulations by NMR : Applications to Small Spin Chains and Ising Spin SystemsRao, K Rama Koteswara January 2014 (has links) (PDF)
Quantum simulations, where controllable quantum systems are used to simulate other quantum systems, originally proposed by Richard Feynman, are one of the most remarkable applications of quantum information science. Compared to computation, quantum simulations require much less number of qubits for the m to be practical. In the work described in this thesis, we have performed a few quantum simulations of small quantum systems using Nuclear Magnetic Resonance(NMR) techniques. These simulations have been used to experimentally demonstrate the underlying interesting quantum protocols. All the experiments presented have been carried out using liquid-state or liquid crystal NMR. Numerical pulse optimization techniques have been utilized in some of the experiments, to achieve better control over the spin systems.
The first chapter contains “Introduction” to quantum information processing, NMR, and numerical pulse optimization techniques. In chapter 2, we describe quantum simulation of a 3-spin Heisenberg-XY spin chain having only nearest neighbour interactions. Recently, spin chains having pre-engineered short-range interactions have been proposed to efficiently transfer quantum information between different parts of a quantum information processor. Other important proposals involving these spin chains include generating entangled states and universal quantum computation. However, such engineered interactions do not occur naturally in any system. In such a scenario, the experimental viability of these proposals can be tested by simulating the spin chains in other controllable quantum systems. In this work, we first theoretically study the time evolution of bipartite and tripartite entanglement measures for a 3-spin open ended XY spin chain. Then, by simulating the XY interactions in a 3-spin nuclear spin system, we experimentally generate, (i)a bipartite maximally(pseudo-)entangled state(Bell state) between end qubits, and(ii) multipartite(pseudo-)entangled states(Wand GHZ states),starting from separable pseudo-pure states. Bell state has been generated by using only the natural unitary evolution of the XY spin chain. W-state and GHZ-state have been generated by applying a single-qubit rotation to the second qubit, and a global rotation of all the three qubits respectively after the unitary evolution of the spin chain.
In chapter 3, we simulate a 3-spin quantum transverse Ising spin system in a triangular configuration, and show that multipartite quantum correlations can be used to distinguish between the frustrated and non-frustrated regimes in the ground state of this spin system. The ground state of the spin system has been prepared by using adiabatic state preparation method. Gradient ascent pulse engineering technique has been utilized to efficiently realize the adiabatic evolution of the spin system. To analyse the experimental ground state of the system, we employ two different multipartite quantum correlation measures, generated from monogamy studies of bipartite quantum correlations.
Chapter 4 contains a digital quantum simulation of the mirror inversion propagator corresponding to the time evolution of an XY spin chain. This simulation has been used to experimentally demonstrate the mirror inversion of quantum states, proposed by Albanese et al.[Phys.Rev.Lett.93,230502(2004)], by which entangled states can be transferred from one end of the chain to the other end. The experiments have been performed in a 5-qubit dipolar coupled nuclear spin system. For simulation, we make use of the recently proposed unitary operator decomposition algorithm along with the numerical pulse optimization techniques, which assisted in achieving high experimental fidelities.
Chapter 5 contains a digital quantum simulation of the unitary propagator of a transverse Ising spin chain, which has been used to experimentally demonstrate the perfect state transfer protocol of Di Franco et al. [Phys.Rev.Lett.101,230502(2008)]. The importance of this protocol arises due to the fact that it achieves perfect state transfer from one end of the chain to the other end without the necessity of initializing the intermediate spins of the chain, whereas most of the previously proposed protocols require initialization. The experiments have been performed in a 3-spin nuclear spin system. The simulation has also been used to demonstrate the generation of a GHZ state.
|
7 |
Durch Lumineszenz nachgewiesene magnetische Resonanz: Aufbau eines Spektrometers und Messungen an den Laserkristallen Al2O3:Cr und Al2O3:Ti / Magnetic resonance detected via luminescence: construction of a spectrometer and measurements of the laser crystals Al2O3:Cr and Al2O3:TiRuza, Egils 15 September 2000 (has links)
Im Rahmen dieser Arbeit wurde eine Meßanordnung zum Nachweis der Elektronen-Spin-Resonanz durch Beobachtung
der Lumineszenz aufgebaut. Diese Methode ist unter dem Namen Optisch Detektierte Magnetische Resonanz (ODMR)
bekannt. Sie erlaubt es, die Lumineszenzeigenschaften mit der aus der Spin-Resonanz gewonnenen atomistischen
Strukturinformation zu verknüpfen. Mit der ODMR-Anlage wurden Untersuchungen an zwei unterschiedlich dotierten
Korund-Kristallen, Rubin (Al2O3:Cr) und Saphir (Al2O3:Ti), durchgeführt. Anhand der Literaturdaten für Rubin wurde
die neu aufgebaute Anlage getestet und geeicht. Die Messungen an Saphir dienten zur Klärung der bisher kontrovers
diskutierten Struktur von blau emittierenden Lumineszenzzentren.
Bei einer UV-Anregung entsteht im Saphir neben der schon bekannteninfraroten Ti3+-Emission eine breite blau-grüne
Emission, die aus zwei überlappenden Teilbanden besteht. Die eine hat das Maximum bei ca. 410 nm ("blaue Bande")
und die andere bei 480 nm ("grüne Bande"). Die Anregung beider Lumineszenzbanden findet bei 250 nm und 270 nm
bzw. 270 nm statt. Um diese blau-grüne Lumineszenz zu erklären, sind unterschiedliche Modelle vorgeschlagen
worden. So wurde die Lumineszenz F+-Zentren (ein Elektron in einer Sauerstoffleerstelle) oder Ti-Zentren zugeordnet.
Im Falle der Ti-Zentren wurden alternativ Kristallfeldübergänge von Ti3+-Ionen und Charge-Transfer-Übergänge von
Ti4+-Ionen mit der Lumineszenz in Verbindung gebracht.
Die im Rahmen dieser Arbeit durchgeführten ODMR-Messungenergaben als Ursache der blau-grünen Lumineszenz
zwei einander ähnliche Triplett-Systeme T1 und T2. Diese konnten durch folgende ESR-Parameter beschrieben werden:
T1: gx,y,z=2.00, 1.96, 1.94 (g-Tensor), D=0.306 cm-1 (axialer Anteil der Kristallfeldaufspaltung), E=0.034 cm-1
(orthorhombischer Anteil der Kristallfeldaufspaltung); T2: gx,y,z=1.99, 1.99, 1.99, D=0.342 cm-1, E=0.054 cm-1. Das
Zentrum T1 konnte der blauen und T2 der grünen Lumineszenz-Teilbande zugeordnet werden. Da die
Lumineszenz-Zentren angeregte Tripletts sind, können Dublett-Systeme wie die F+-Zentren oder
Ti3+-Ionenausgeschlossen werden. Dagegen sind die Beobachtungen verträglich mit dem
Ti4+-O2--Charge-Transfer-Modell (mit Ti3+-O- im angeregten Zustand). Beide Lumineszenzbanden stammen
demzufolge aus der Rekombination des Elektron-Loch-Paares im Ti3+-O--Zentrum des Typs T1 oder T2, das durch
den Charge-Transfer-Übergang eines Elektrons vom Sauerstoff zum Ti4+ entsteht. Elektron und Loch koppeln zu einem
Triplett-System. Das Loch ist bei beiden Zentren an einem dem Titanion benachbarten Sauerstoffion lokalisiert. Dies
wird daraus geschlossen, daß die z-Achse der ESR-Tensoren ungefähr parallel zur Richtung der Al-O-Bindungen im
ungestörten Kristallgitter liegt.
Für beide Zentren ist das Verhältnis aus axialem undorthorhombischem Kristallfeldparameter |D/E| ungefähr gleich.
Dies läßt auf eine ähnliche Struktur der Umgebung schließen, was das Bild unterstützt, daß beide Zentren fast identisch
aufgebaut sind. Der axiale Kristallfeldanteil (Parameter D) von T2 ist etwas größer als der von T1. Dies kann durch
einen kleineren Abstand von Elektron und Loch, d. h. von Ti3+ und O- erklärt werden, da die Kopplung zwischen den
Spins dann stärker sein wird. In ungestörtem Al2O3 weisen drei der sechs einem Al-Ion benachbarten Sauerstoffionen
einen kleineren Abstand auf als die anderen drei Ionen. Die drei Sauerstoffionen mit gleichem Abstand bilden jeweils
Dreiecke, wobei das mit dem kleineren Abstand eine größere Seitenlänge aufweist. Es besteht nun die Möglichkeit, daß
die beiden Zentren T1 und T2 sich lediglich darin unterscheiden, daß das Loch einmal auf einem Ion des kleinen und
einmal auf einem des großen Dreiecks eingefangen ist. Wegen der Größe von D wäre T1 dann dem kleinen und T2 dem
großen Dreieck zuzuordnen. Auch die beobachteten Hauptachsenrichtungen der ESR-Tensoren sind mit dieser
Zuordnung verträglich.
Im angeregten Zustand befindet sich das Elektron auf dem Titanion imgleichen Zustand wie das in dem Grundzustand
des Ti3+-Ions. Der große Unterschied zwischen den in der ESR des Grundzustands gemessenen g-Werten
(gparallel=1.067, gperp<0.1, Kask et al., 1964) und dem hier gewonnenen fast isotropen g-Faktor (g=2) kann durch die sogenannte Auslöschung des Bahndrehimpulses erklärt werden, die bei niedrigsymmetrischem System wie Ti3+-O- auftritt.
|
Page generated in 0.0673 seconds