• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Frequency control of auto-oscillations of the magnetization in spin Hall nano-oscillators

Hache, Toni 15 April 2021 (has links)
This thesis experimentally demonstrates four approaches of frequency control of magnetic auto-oscillations in spin Hall nano-oscillators (SHNOs). The frequency can be changed in the GHZ-range by external magnetic fields as shown in this work. This approach uses large electromagnets, which is inconvenient for future applications. The nonlinear coupling between oscillator power and frequency can be used to control the latter one by changing the applied direct current to the SHNO. The frequency can be controlled over a range of several 100 MHz as demonstrated in this thesis. The first part of the experimental chapter demonstrates the synchronization (injection-locking) between magnetic auto-oscillations and an external microwave excitation. The additionally applied microwave current generates a modulation of the effective magnetic field, which causes the interaction with the auto-oscillation. Both synchronize over a range of several 100 MHz. In this range, the auto-oscillation frequency can be controlled by the external stimulus. An increase of power and a decrease of line width is achieved in the synchronization range. This is explained by the increased coherence of the auto-oscillations. A second approach is the synchronization of auto-oscillations to an alternating magnetic field. This field is generated by a freestanding antenna, which is positioned above the SHNO. The second part of the experimental chapter introduces a bipolar concept of SHNOs and its experimental demonstration. In contrast to conventional SHNOs, bipolar SHNOs generate auto-oscillations for both direct current polarities and both directions of the external magnetic field. This is achieved by combining two ferromagnetic layers in an SHNO. The combination of two different ferromagnetic materials is used to switch between two frequency ranges in dependence of the direct current polarity since it defines the layer showing auto-oscillations. This approach can be used to change the frequency in the GHz-range by switching the direct current polarity. / Diese Arbeit demonstriert experimentell vier verschiedene Methoden der Frequenzkontrolle magnetischer Auto-Oszillationen in Spin Hall Nano-Oszillatoren (SHNOs). Durch externe magnetische Felder kann die Frequenz im GHz-Bereich geändert werden, wie es in dieser Arbeit gezeigt wird. Dies erfordert jedoch große Elektromagneten, deren Nutzung für zukünftige Anwendungen der SHNOs nicht geeignet sind. Aufgrund der nichtlinearen Kopplung zwischen Oszillatorleistung und Oszillatorfrequenz, lässt sich letztere durch den Versorgungsstrom beeinflussen. Dies ist typischerweise in einem Bereich von mehreren 100 MHz möglich, wie es an mehreren Stellen dieser Arbeit gezeigt wird. Im ersten Abschnitt des Ergebnisteils wird die Synchronisation der magnetischen Auto-Oszillationen zu einer externen Mikrowellenanregung demonstriert. Der zusätzlich eingespeiste Mikrowellenstrom erzeugt eine Modulation des effektiven Magnetfelds, was zur Wechselwirkung mit den Auto-Oszillationen führt. Diese synchronisieren über eine Frequenzdifferenz von mehreren 100 MHz. In diesem Bereich lässt sich die Frequenz der Auto-Oszillation mit der äußeren Frequenz steuern. Innerhalb des Synchronisationsbereichs wird außerdem eine Erhöhung der Leistung und eine Verringerung der Linienbreite der Auto-Oszillationen festgestellt. Dies wird mit einer Erhöhung der Kohärenz der Auto-Oszillationen erklärt. Neben der zusätzlichen Einspeisung eines Mikrowellenstroms können die Auto-Oszillationen auch zu einem magnetischen Wechselfeld synchronisieren, welches von einer frei beweglichen Antenne erzeugt wird, die über dem SHNO positioniert wird. Im zweiten Abschnitt des Ergebnisteils wird ein bipolares Konzept eines SHNO vorgestellt und seine Funktionsfähigkeit experimentell nachgewiesen. Im Vergleich zu konventionellen SHNOs erzeugen bipolare SHNOs Auto-Oszillationen für beide Polaritäten des elektrischen Versorgungsstroms und beide Richtungen des externen Magnetfelds. Dies wird durch die Kombination zweier ferromagnetischer Lagen in einem SHNO erreicht. Die Kombination unterschiedlicher ferromagnetischer Materialien kann genutzt werden, um die Mikrowellenfrequenz in Abhängigkeit der Stromrichtung zu ändern, da diese bestimmt in welcher Lage die Auto-Oszillationen erzeugt werden können. Durch eine geeignete Materialkombination kann die Frequenz im GHz-Bereich geändert werden, wenn die Strompolarität umgekehrt wird.
2

Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei Raumtemperatur / Spin transfer torque induced switching of nano magnets in lateral spin valve geometry at roomtemperature

Buhl, Matthias 14 April 2014 (has links) (PDF)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen. Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht. In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt. / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.
3

Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei Raumtemperatur

Buhl, Matthias 07 April 2014 (has links)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen. Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht. In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt.:Kurzfassung v Abstract vi Danksagung xi 1 Einleitung 1 2 Grundlagen zu Spintronic 5 2.1 Elektronenspins als Grundlage für den Ferromagnetismus . . . . . . 6 2.2 Magnetowiderstandseffekte . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Anisotroper Magnetowiderstandseffekt (AMR) . . . . . . . . 8 2.2.2 Riesenmagnetowidersandseffekt (GMR) . . . . . . . . . . . . 10 2.2.3 Tunnelmagnetowiderstandeffekt (TMR) . . . . . . . . . . . 13 2.3 Spin–Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Spinpolarisation . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Spin-Injektion und Spin-Akkumulation . . . . . . . . . . . . 17 2.3.3 Spinpolarisierter elektrischer Transport . . . . . . . . . . . . 20 2.4 Spin Transfer Torque (STT) . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Geometrien für Spintronic–Bauelemente . . . . . . . . . . . . . . . 30 3 Probenkonzept und Fabrikationsmethoden 35 3.1 Probenkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Anforderungen an die CIP–STT-Struktur . . . . . . . . . . . 37 3.1.2 Anforderungen an die ferromagnetischer Materialien . . . . . 38 3.2 Techniken der Probenfabrikation . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Elektronenstrahllithografie (EBL) . . . . . . . . . . . . . . . 41 3.2.2 Positiv- und Negtivlack Prozess . . . . . . . . . . . . . . . . 41 3.2.3 Physikalisches Ätzen . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Probenfabrikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Experimentelle Methoden 49 4.1 Transmissionsröntgenmikroskopie . . . . . . . . . . . . . . . . . . . 49 4.1.1 Rastertransmissionsröntgenmikroskopie (STXM) . . . . . . . 51 4.1.2 Kontrastmechanismen . . . . . . . . . . . . . . . . . . . . . 53 4.1.3 Röntgenmagnetischer zirkularer Dichroismus (XMCD) . . . 54 4.2 Magneto-optische Kerr–Effekt Mikroskopie . . . . . . . . . . . . . . 57 4.2.1 Kerr–Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 Longitudinale Kerr–Geometrie . . . . . . . . . . . . . . . . . 58 5 STT–Experimente und Diskussion 61 5.1 Experimenteller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Eigenschaften der magnetischen Bauelemente . . . . . . . . . . . . . 64 5.2.1 MOKE-Mikroskopie . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Mikromagnetische Simulation . . . . . . . . . . . . . . . . . 67 5.2.3 Analytische Berechnung zum Nanopillar . . . . . . . . . . . 70 5.2.4 Röntgentransmissionsmikroskopie . . . . . . . . . . . . . . . 72 5.3 Spin Transfer Torque-Schalten . . . . . . . . . . . . . . . . . . . . 74 5.3.1 STT-Schalten mit unterstützendem Magnetfeld . . . . . . . 74 5.3.2 STT-Schalten ohne unterstützendes Magnetfeld . . . . . . . 79 5.3.3 Betrachtung besonderer experimenteller Aspekte . . . . . . . 81 5.3.4 STT-Schalten ohne direkten Ladungstransport . . . . . . . . 89 5.3.5 Magnetisierungsumkehr durch Oersted-Feld . . . . . . . . . 93 6 Zusammenfassung und Ausblick 97 A STXM-Hysteresemessungen der Polarisatoren und Nanopillar 101 Literaturverzeichnis 105 / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.:Kurzfassung v Abstract vi Danksagung xi 1 Einleitung 1 2 Grundlagen zu Spintronic 5 2.1 Elektronenspins als Grundlage für den Ferromagnetismus . . . . . . 6 2.2 Magnetowiderstandseffekte . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Anisotroper Magnetowiderstandseffekt (AMR) . . . . . . . . 8 2.2.2 Riesenmagnetowidersandseffekt (GMR) . . . . . . . . . . . . 10 2.2.3 Tunnelmagnetowiderstandeffekt (TMR) . . . . . . . . . . . 13 2.3 Spin–Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Spinpolarisation . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Spin-Injektion und Spin-Akkumulation . . . . . . . . . . . . 17 2.3.3 Spinpolarisierter elektrischer Transport . . . . . . . . . . . . 20 2.4 Spin Transfer Torque (STT) . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Geometrien für Spintronic–Bauelemente . . . . . . . . . . . . . . . 30 3 Probenkonzept und Fabrikationsmethoden 35 3.1 Probenkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Anforderungen an die CIP–STT-Struktur . . . . . . . . . . . 37 3.1.2 Anforderungen an die ferromagnetischer Materialien . . . . . 38 3.2 Techniken der Probenfabrikation . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Elektronenstrahllithografie (EBL) . . . . . . . . . . . . . . . 41 3.2.2 Positiv- und Negtivlack Prozess . . . . . . . . . . . . . . . . 41 3.2.3 Physikalisches Ätzen . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Probenfabrikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Experimentelle Methoden 49 4.1 Transmissionsröntgenmikroskopie . . . . . . . . . . . . . . . . . . . 49 4.1.1 Rastertransmissionsröntgenmikroskopie (STXM) . . . . . . . 51 4.1.2 Kontrastmechanismen . . . . . . . . . . . . . . . . . . . . . 53 4.1.3 Röntgenmagnetischer zirkularer Dichroismus (XMCD) . . . 54 4.2 Magneto-optische Kerr–Effekt Mikroskopie . . . . . . . . . . . . . . 57 4.2.1 Kerr–Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 Longitudinale Kerr–Geometrie . . . . . . . . . . . . . . . . . 58 5 STT–Experimente und Diskussion 61 5.1 Experimenteller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Eigenschaften der magnetischen Bauelemente . . . . . . . . . . . . . 64 5.2.1 MOKE-Mikroskopie . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Mikromagnetische Simulation . . . . . . . . . . . . . . . . . 67 5.2.3 Analytische Berechnung zum Nanopillar . . . . . . . . . . . 70 5.2.4 Röntgentransmissionsmikroskopie . . . . . . . . . . . . . . . 72 5.3 Spin Transfer Torque-Schalten . . . . . . . . . . . . . . . . . . . . 74 5.3.1 STT-Schalten mit unterstützendem Magnetfeld . . . . . . . 74 5.3.2 STT-Schalten ohne unterstützendes Magnetfeld . . . . . . . 79 5.3.3 Betrachtung besonderer experimenteller Aspekte . . . . . . . 81 5.3.4 STT-Schalten ohne direkten Ladungstransport . . . . . . . . 89 5.3.5 Magnetisierungsumkehr durch Oersted-Feld . . . . . . . . . 93 6 Zusammenfassung und Ausblick 97 A STXM-Hysteresemessungen der Polarisatoren und Nanopillar 101 Literaturverzeichnis 105

Page generated in 0.0505 seconds