131 |
Improving GEMFsim: a stochastic simulator for the generalized epidemic modeling frameworkFan, Futing January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Caterina M. Scoglio / The generalized epidemic modeling framework simulator (GEMFsim) is a tool designed by Dr. Faryad Sahneh, former PhD student in the NetSE group. GEMFsim simulates stochastic spreading process over complex networks. It was first introduced in Dr. Sahneh’s doctoral dissertation "Spreading processes over multilayer and interconnected networks" and implemented in Matlab. As limited by Matlab language, this implementation typically solves only small networks; the slow simulation speed is unable to generate enough results in reasonable time for large networks. As a generalized tool, this framework must be equipped to handle large networks and contain sufficient support to provide adequate performance.
The C language, a low-level language that effectively maps a program to machine in- structions with efficient execution, was selected for this study. Following implementation of GEMFsim in C, I packed it into Python and R libraries, allowing users to enjoy the flexibility of these interpreted languages without sacrificing performance.
GEMFsim limitations are not limited to language, however. In the original algorithm (Gillespie’s Direct Method), the performance (simulation speed) is inversely proportional to network size, resulting in unacceptable speed for very large networks. Therefore, this study applied the Next Reaction Method, making the performance irrelevant of network size. As long as the network fits into memory, the speed is proportional to the average node degree of the network, which is not very large for most real-world networks.
This study also applied parallel computing in order to advantageously utilize multiple cores for repeated simulations. Although single simulation can not be paralleled as a Markov process, multiple simulations with identical network structures were run simultaneously, sharing one network description in memory.
|
132 |
Statistical inference in complex networks / Inferência estatística em redes complexasOe, Bianca Madoka Shimizu 16 January 2017 (has links)
The complex network theory has been extensively used to understand various natural and artificial phenomena made of interconnected parts. This representation enables the study of dynamical processes running on complex systems, such as epidemics and rumor spreading. The evolution of these dynamical processes is influenced by the organization of the network. The size of some real world networks makes it prohibitive to analyse the whole network computationally. Thus it is necessary to represent it by a set of topological measures or to reduce its size by means of sampling. In addition, most networks are samples of a larger networks whose structure may not be captured and thus, need to be inferred from samples. In this work, we study both problems: the influence of the structure of the network in spreading processes and the effects of sampling in the structure of the network. Our results suggest that it is possible to predict the final fraction of infected individuals and the final fraction of individuals that came across a rumor by modeling them with a beta regression model and using topological measures as regressors. The most influential measure in both cases is the average search information, that quantifies the ease or difficulty to navigate through a network. We have also shown that the structure of a sampled network differs from the original network and that the type of change depends on the sampling method. Finally, we apply four sampling methods to study the behaviour of the epidemic threshold of a network when sampled with different sampling rates and found out that the breadth-first search sampling is most appropriate method to estimate the epidemic threshold among the studied ones. / Vários fenômenos naturais e artificiais compostos de partes interconectadas vem sendo estudados pela teoria de redes complexas. Tal representação permite o estudo de processos dinâmicos que ocorrem em redes complexas, tais como propagação de epidemias e rumores. A evolução destes processos é influenciada pela organização das conexões da rede. O tamanho das redes do mundo real torna a análise da rede inteira computacionalmente proibitiva. Portanto, torna-se necessário representá-la com medidas topológicas ou amostrá-la para reduzir seu tamanho. Além disso, muitas redes são amostras de redes maiores cuja estrutura é difícil de ser capturada e deve ser inferida de amostras. Neste trabalho, ambos os problemas são estudados: a influência da estrutura da rede em processos de propagação e os efeitos da amostragem na estrutura da rede. Os resultados obtidos sugerem que é possível predizer o tamanho da epidemia ou do rumor com base em um modelo de regressão beta com dispersão variável, usando medidas topológicas como regressores. A medida mais influente em ambas as dinâmicas é a informação de busca média, que quantifica a facilidade com que se navega em uma rede. Também é mostrado que a estrutura de uma rede amostrada difere da original e que o tipo de mudança depende do método de amostragem utilizado. Por fim, quatro métodos de amostragem foram aplicados para estudar o comportamento do limiar epidêmico de uma rede quando amostrada com diferentes taxas de amostragem. Os resultados sugerem que a amostragem por busca em largura é a mais adequada para estimar o limiar epidêmico entre os métodos comparados.
|
133 |
Caracterização funcional das isoformas de splicing do gene ADAM23 / Functional characterization of ADAM23 gene splicing isoformsCavalher, Felicia Peterson 13 September 2012 (has links)
A ADAM23 é uma glicoproteína transmembrana pertencente à família ADAM (A Disintegrin and Metalloprotease) que apresenta a estrutura protéica típica dos membros desta família, mas não possui atividade de metaloprotease. O gene ADAM23 apresenta três isoformas de splicing, α, β e γ, que codificam proteínas com porções C-terminais distintas. As isoformas α e β codificam proteínas com domínios transmembranas diferentes, enquanto γ provavelmente consiste em uma isoforma secretada ou citoplasmática de ADAM23. Foi demonstrado que o gene ADAM23 está epigeneticamente silenciado em tumores de mama de estágios mais avançados e que seu silenciamento está associado a um maior risco de desenvolvimento de metástases e a um pior prognóstico. Recentemente, foi descrito que a proteína ADAM23 interage diretamente com a integrina αVβ3 na linhagem tumoral de mama MDA-MB-435, sendo capaz de modular seu estado conformacional, controlando sua ativação. Utilizando RNAi, observou-se que o silenciamento completo do gene ADAM23 (i.e., as três isoformas) aumenta os níveis de αVβ3 em conformação ativa na superfície das células MDA-MB-435, promovendo um incremento de sua capacidade migratória e adesiva. No presente trabalho, avaliamos por reações de amplificação em tempo real o perfil de expressão das três isoformas de splicing do gene ADAM23 em cinco tecidos normais (mama, cólon, cérebro, próstata e pâncreas) e em doze linhagens tumorais derivadas destes tecidos. Observamos diferenças nos níveis de expressão das isoformas em todas as amostras avaliadas, tanto dentro de uma determinada amostra, como quando comparamos tecidos normais entre si ou com linhagens tumorais. A isoforma γ é a mais expressa em todos os tecidos normais (exceto em cérebro) e em todas as linhagens tumorais. Em tecido normal de mama e de próstata e nas doze linhagens tumorais, ADAM23α é a segunda isoforma mais expressa, sendo β a menos expressa. Constatamos também que a fração representada por cada isoforma, em relação à expressão total do gene ADAM23, está alterada nas linhagens tumorais, em comparação aos tecidos normais correspondentes. Com o intuito de elucidar a função das isoformas de ADAM23 separadamente, utilizamos shRNAs (short hairpin RNAs) para reduzir a expressão de cada isoforma de modo individual e específico na linhagem tumoral MDA-MB-435, e avaliamos seu efeito na proliferação, na morfologia, na adesão e no espraiamento celular. Verificamos que a redução da expressão da isoforma γ aumentou significativamente a taxa de proliferação das células MDA-MB-435 cultivadas em modelo tridimensional. Demonstramos também que ADAM23γ participa da regulação da morfologia e da capacidade de espraiamento das células MDA-MB-435 em condições padrão de cultivo (i.e., meio de cultura completo e placas não-sensibilizadas com substratos) e em componentes específicos da matriz extracelular, como fibronectina, colágeno I e matrigel. A isoforma α também está envolvida no controle da morfologia e do espraiamento da linhagem MDA-MB-435, porém, de modo distinto da isoforma γ. Já ADAM23β não interfere na morfologia das células MDA-MB-435 e tem efeito marginal no espraiamento celular apenas em condições padrão de cultivo. Em conjunto, nossos resultados demonstram que as isoformas de ADAM23 são diferencialmente expressas em tecidos normais e tumorais, e exercem funções biológicas distintas. / ADAM23 is a transmembrane glycoprotein that belongs to the ADAM (A Disintegrin and Metalloprotease) family of proteins and exhibits the typical protein structure of the family members, but it doesn\'t have metalloprotease activity. The ADAM23 gene has three splicing isoforms, α, β and γ, that code for proteins with different C-terminal regions. Isoforms α and β code for proteins with different transmembrane domains, while γ probably constitute a secreted or cytoplasmatic isoform of ADAM23. It has been demonstrated that the ADAM23 gene is epigenetically silenced in advanced stage breast tumors and that its silencing is associated with a higher risk of developing metastases and with a worse prognosis. Recently, it was described that ADAM23 protein interacts directly with αVβ3 integrin in the breast tumor cell line MDA-MB-435, modulating its conformational state and controlling its activation. Using RNAi, it was observed that the complete silencing of ADAM23 gene (the three isoforms) raises the levels of αVβ3 in its active conformation in the surface of MDA-MB-435 cells, promoting an increase in its migratory and adhesive capacity. In the present work, we evaluated by real time PCR the expression pattern of the three splicing isoforms of ADAM23 gene in five normal tissues (breast, colon, brain, prostate and pancreas) and in twelve tumor cell lines derived from these tissues. We observed differences in the expression levels of the three isoforms in all samples, either within a specific sample or comparing normal tissues among them or with tumor cell lines. Isoform γ has the highest expression in all normal tissues (except for brain) and in all tumor cell lines evaluated. In breast and prostate normal tissues and in all tumor cell lines, ADAM23α is the second most expressed isoform, while β is the less expressed. We also noticed that the ratio represented by each isoform, relative to the total expression of ADAM23 gene, is altered in the tumor cell lines, compared to the corresponding normal tissues. With the aim to elucidate the function of ADAM23 isoforms separately, we used shRNAs (short hairpin RNAs) to reduce the expression of each isoform specifically in the MDA-MB-435 tumor cell line, and studied its effects in proliferation, morphology, adhesion and cell spreading. We observed that the reduced expression of isoform γ significantly increased the proliferation rate of MDA-MB-435 cells cultivated in tridimensional system. Also, we demonstrated that ADAM23γ participates in the regulation of cell morphology and spreading of MDA-MB-435 cells, both in standard culture conditions (cell culture media with fetal serum and in plates not sensitized with substrates) and in specific components of extracellular matrix, such as fibronectin, collagen type I and matrigel. Isoform α is also involved in the control of morphology and spreading of MDA-MB-435 cell line, although in a distinct manner from isoform γ. ADAM23β doesn\'t interfere in the morphology of MDA-MB-435 cells and plays a discrete role in cell spreading only under standard culture conditions. Together, our results demonstrate that ADAM23 isoforms are differently expressed in normal and tumoral tissue, and play distinct biological roles.
|
134 |
NMR Characterization of Pathological Disease States: Monitoring Response to Single-Dose Radiotherapy in a RIF-1 Tumor Model and the Role of Spreading Depression in the Evolution of Ischemic StrokeHenning, Erica C. 22 April 2005 (has links)
The research presented within this dissertation focused on two major areas of research: monitoring the response to single-dose radiotherapy in a RIF-1 tumor model and the role of cortical spreading depression in the evolution of ischemic stroke.
For the research in the first half of this dissertation, quantitative MRI was performed to investigate the spatial correlation between the apparent diffusion coefficient (ADC), spin-spin relaxation times (T2), and proton density (M0) in murine radiation-induced fibrosarcoma (RIF-1) tumors following single-dose (1000cGy) radiotherapy using the k-means (KM) algorithm. An in-depth comparison between KM-derived volume estimates and conventional histology via the hematoxylin-eosin (H&E) staining procedure (for identification of viable tumor versus necrosis), as well as via hypoxic-inducible factor-1alpha (HIF-1alpha) immunohistochemistry (for identification of regions of hypoxia versus well-oxygenated tissue) was performed. The results of this study demonstrated that multispectral (MS) analysis provides: (1) an improved tissue segmentation method over results obtained from conventional single-parameter approaches, (2) subdivision based on the degree of necrosis, as well as delineation between well-oxygenated and hypoxic viable tissue, (3) good correlation with both H&E staining and HIF-1alpha immunohistochemistry, and (4) a method for monitoring the range of tissue viability as a function of time post-treatment, with the potential for predicting therapeutic efficacy.
For the research in the second half of this dissertation, manganese-enhanced MRI (MEMRI) was employed for the characterization of both experimental and pathological cortical spreading depression (CSD). In order to determine the utility of manganese ions (Mn2+) as a marker for spreading depression (SD), experimental SD was elicited by chemical stimulation (KCl application to exposed rat cortex) and compared with control conditions. This study demonstrated that (1) Mn2+ is a more accurate marker for SD than DWI or T2* methods, (2) cortical restriction of MEMRI enhancement supports the contention that apical dendrites are necessary for SD propagation. (3) subcortical enhancement was a result of cortical-subcortical neuronal connectivity. Based on these results, preliminary experiments involving the study of SD in ischemia using Mn2+ were performed. Initial results indicate: (1) MEMRI may provide a method for estimating the likelihood of progression to infarction at acute timepoints post onset of stroke. These studies provide a foundation for further investigation into the role of SD in stroke, and the application of Mn2+ towards the design of therapeutic strategies targeting SD inhibition.
|
135 |
A Numerical Approach to Calculating Population Spreading SpeedLeo, Angela A 02 April 2007 (has links)
A population density, $u_{n}(x)$, is recursively defined by the formula egin{equation*} u_{n+1}(x)=int K(x-y)Big(1-ig(u_{n}(yig)Big)ig(u_{n} (yig)dy + ig(u_{n}(xig)ig(u_{n}(xig). end{equation*} Here, $K$ is a probability density function, $g(u)$ represents the fraction of the population that does not migrate, and $f$ is a monotonically decreasing function that behaves like the Beverton-Holt function. In this paper, I examine and modify the population genetics model found in cite{LV06} to include the case where a density-dependent fraction of the population does not migrate after the selection process.Using the expanded model, I developed a numerical application to simulate the spreading of a species and estimate the spreading speed of the population. The application is tested under various model conditions which include both density-dependent and density- independent dispersal rates. For the density-dependent case, I analyzed the fixed points of the model and their relationship to whether a given species will spread.
|
136 |
Cell sensing on strain-stiffening substrates is not fully explained by the nonlinear mechanical propertyRudnicki, Mathilda Sophia 17 April 2012 (has links)
Cells respond to their mechanical environment by changing shape and size, migrating, or even differentiating to a more specialized cell type. A better understanding of the response of cells to surrounding cues will allow for more targeted and effected designs for biomedical applications, such as disease treatment or cellular therapy. The spreading behavior of both human mesenchymal stem cells (hMSCs) and 3T3 fibroblasts is a function of substrate stiffness, and can be quantified to describe the most visible response to how a cell senses stiffness. The stiffness of the substrate material can be modulated by altering the substrate thickness, and this has been done with the commonly-used linearly elastic gel, polyacrylamide (PA). Though easy to produce and tune, PA gel does not exhibit strain-stiffening behavior, and thus is not as representative of biological tissue as fibrin or collagen gel. Fibroblasts on soft fibrin gel show spreading similar to much stiffer linear gels, indicating a difference in cell stiffness sensing on these two materials. We hypothesize cells can sense further into fibrin and collagen gels than linear materials due to the strain-stiffening material property. The goal of this work is to compare the material response of linear (PA) and strain-stiffening (fibrin, collagen gel) substrates through modulation of effective stiffness of the materials. The two-step approach is to first develop a finite element model to numerically simulate a cell contracting on substrates of different thicknesses, and then to validate the numerical model by quantifying fibroblast spreading on sloped fibrin and collagen gels. The finite element model shows that the effective stiffness of both linear and nonlinear materials sharply increases once the thickness is reduced below 10µm. Due to the strain-stiffening behavior, the nonlinear material experiences a more drastic increase in effective stiffness at these low thicknesses. Experimentally, the gradual response of cell area of HLF and 3T3 fibroblasts on fibrin and collagen gels is significantly different (p<0.05) from these cell types on PA gel. This gradual increase in area as substrate thickness decreases was not predicted by the finite element model. Therefore, cell spreading response to stiffness is not explained by just the nonlinearity of the material.
|
137 |
De la cellule au primate, propagation physiopathologique de la protéine Tau / From cells to primates, pathophysiological propagation of Tau proteinsDujardin, Simon 21 September 2015 (has links)
Tau est une protéine stabilisatrice des microtubules majoritairement exprimée au niveau neuronal qui existe en six isoformes différentes appelées isoformes 3R ou 4R en fonction de l’inclusion de 3 ou 4 séquences répétées dans leur domaine de liaison aux microtubules. Dans une vingtaine de pathologies neurodégénératives appelées tauopathies, des protéines Tau anormalement modifiées s’agrègent formant des lésions intracellulaires appelées dégénérescence neurofibrillaire (DNF). Selon les tauopathies, la morphologie des lésions, leur composition en isoformes ainsi que l’évolution spatio-temporelle de la pathologie diffèrent. Dans la plupart des cas, les tauopathies sont sporadiques mais quelques mutations du gène codant Tau (MAPT) causent des formes familiales de démences fronto-temporales. Dans certaines tauopathies sporadiques comme la maladie d’Alzheimer, la DNF est initiée dans des régions spécifiques et évolue ensuite de manière stéréotypée. Ces stades neuropathologiques sont bien définis, mais les mécanismes expliquant cette évolution restent méconnus. Récemment, certaines études ont proposé que des espèces pathologiques de la protéine Tau sont capables de se déplacer activement de région en région suivant des connections neuro-anatomiques propageant ainsi la pathologie Tau dans le cerveau.Dans ce contexte, nous avons démontré à la fois in vitro, en utilisant un système de chambre microfluidique mais également in vivo dans un nouveau modèle de rat, que la protéine Tau est activement et physiologiquement transférée de cellule en cellule. De manière intéressante, la pathologie Tau qui se développe dans l’hippocampe des rats se propage également de région en région. Ce modèle étant basé sur une technologie de vectorisation virale, nous avons pu tester différentes constructions pour montrer qu’étonnamment, la pathologie Tau induite par des espèces mutées ou des isoformes 3R est restreinte autour du site d’initiation et ne propage pas aussi loin que pour les espèces sauvages 4R. La protéine Tau ainsi que la DNF se propagent donc de cellules en cellules mais les mécanismes expliquant cette propagation restent inconnus. Pour aborder cette question, et connaissant l’importance des vésicules extracellulaires (EVs) dans les mécanismes de communication intercellulaire, nous avons analysé leur implication dans le transfert de la protéine Tau. Nous avons purifié des EVs in vitro depuis des surnageants de culture mais également in vivo depuis des échantillons de liquide céphalorachidien de primates ainsi que des échantillons de fluide interstitiel cérébral de rat. Nous avons ainsi démontré que la protéine Tau est sécrétée de manière physiologique sous forme libre mais également au sein de EVs issues du bourgeonnement de la membrane plasmique nommées ectosomes. Il apparaît aussi qu’en cas de surexpression ou de présence de DNF, la protéine Tau est retrouvée dans des exosomes, des EVs issues de la voie endosomes/lysosomes.Ces résultats nous montrent que la protéine Tau se propage de neurone en neurone physiologiquement mais aussi durant des processus pathologiques. Il semble aussi exister des espèces particulières de protéine Tau plus promptes à se propager que d’autres. Ces différences pourraient en partie expliquer les différents phénotypes observés au sein des tauopathies. Nous avons aussi démontré que la protéine Tau est sécrétée via plusieurs voies de sécrétions qui pourraient refléter différents stades physiopathologiques. Des études complémentaires sont nécessaires notamment pour 1-clairement identifier les mécanismes de sortie et d’entrée de Tau dans les neurones. 2-comprendre si certaines espèces vont spécifiquement induire la pathologie dans les neurones secondaires et s’il est possible de les bloquer grâce à des thérapies ciblées. Et 3-identifier les raisons qui expliquent les vulnérabilités de certaines populations cellulaires. / Tau is a microtubule-associated protein mainly expressed in neurons. There are six different isoforms of this protein bearing either 3 or 4 microtubule-binding domains and called 3R-Tau or 4R-Tau. During the course of tauopathies, Tau proteins are abnormally modified and aggregate in specific intracellular lesions called neurofibrillary degeneration (NFD). According to tauopathies, the morphology of lesions, their isoforms’ composition and the spatiotemporal evolution of the pathology are different. Moreover, tauopathies are mostly sporadic but some mutations on Tau gene (MAPT) induce rare forms of familial fronto-temporal dementia. In some sporadic tauopathies like Alzheimer’s disease, the NFD is initiated in specific brain areas and evolves stereotypically in well-defined neuropathological stages. The mechanisms underlying such evolutions are mainly unknown but recently, different studies had proposed that some pathological species of Tau protein are able to actively move from region-to-region following neuro-anatomical connections and to spread the Tau pathology intra-cerebrally by this way.Within this context, we have demonstrated either in vitro using a microfluidic chamber system or in vivo using a new rat model, that Tau proteins are actively and physiologically transferred from cell-to-cell. Interestingly, in this model we could also follow the development of the Tau pathology inside the rats’ hippocampus but also its propagation from region-to-region. This model is based on a viral vector technology; therefore, we were able to test different construct and to show that surprisingly, Tau pathology induced by mutated or 3R-Tau species is restricted to the vicinity of the initiation site and do not propagate as far as the wild-type 4R-Tau species.Tau proteins as well as NFD are cell-to-cell propagating but the mechanisms underlying this phenomenon are still unknown. In order to address this point and knowing the significance of extracellular vesicles (EVs) in the intercellular communication mechanisms, we analysed their implication in the transfer of Tau proteins. We purified EVs in vitro from culture supernatants but also in vivo from primates’ cerebrospinal fluid samples and rats’ cerebral interstitial fluid samples. We demonstrated that Tau proteins are secreted physiologically in a free form but also within specific EVs named ectosomes and coming from a budding of the plasma membrane. Also, it seems that when Tau is overexpressed and when NFD is present, Tau proteins are retrieved within EVs named exosomes and derived from the endosomes/lysosomes pathway.These results clearly show that Tau proteins are propagating from neuron to neuron physiologically but also during pathological processes. It seems also that some specific Tau species are more prone to propagate than others. These differences could partly contribute to the different phenotypes observed among tauopathies. We have also demonstrated that Tau proteins are secreted via several pathways of secretion that could reflect different pathophysiological stages. Some complementary studies are needed particularly to 1- clearly identify the cellular mechanisms of Tau exit and entry. 2- to understand if some Tau species will specifically induce Tau pathology in secondary neurons and if it is possible to block this phenomenon thanks to targeted therapy. And 3- to identify the reasons that explain the vulnerability of some specific cell populations to Tau pathology propagation.
|
138 |
AlteraÃÃes hematolÃgicas e funcionais causadas por venenos de subespÃcies brasileiras de Crotalus durissus e suas fraÃÃes isoladas / HematolÃgicas and functional alterations caused by venom of Brazilian subspecies of Crotalus durissus and its isolated fractionsIÃda Pereira de Souza 27 November 2006 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Os acidentes ofÃdicos de serpentes representam um sÃrio problema de SaÃde PÃblica nos paÃses tropicais, tanto pela freqÃÃncia com que ocorrem e/ou pela morbi-mortalidade que ocasionam. As serpentes do gÃnero Crotalus estÃo representadas no Brasil pela espÃcie Crotalus durissus, a qual se divide em seis subespÃcies. Nosso trabalho teve como objetivo avaliar os efeitos dos venenos das serpentes Crotalus durissus cascavella originadas do estado do Cearà (Cdcc) e MaranhÃo (Cdcm); Crotalus durissus collilineatus (Cdcol); Crotalus durissus ruruima (Cdru) e suas fraÃÃes, Crotoxina (CTXru) e Fosfolipase A2 (PLA2ru), nos processos biolÃgicos de espraiamento celular, fagocitose, atividade fungicida e alteraÃÃes hematolÃgicas. Camundongos Swiss, machos, foram inoculados por via intraperitonial com os venenos descritos acima, nas doses de 120, 50, 27, 20 (venenos) e 10Âg/Kg (fraÃÃes), respectivamente. Duas horas apÃs inoculaÃÃo foram coletadas amostras de sangue do plexo orbital e o exsudato peritonial. A anÃlise estatÃstica utilizada foi o teste t de Student com significÃncia de 95%. Os animais tratados foram comparados com o grupo controle (inoculados com salina 0,9%). Cdcm e a CTXru causaram as maiores alteraÃÃes no eritrograma. 37,5% dos eritrÃcitos apresentaram morfologia macrocÃtica e microcÃtica; 25,5% hipocrÃmia; 25% com anisocitose e presenÃa de policromasia. Foram observados 16,8% de corpÃsculos de Howell Jolly. A contagem global de leucÃcitos foi reduzida significantemente apÃs administraÃÃo do Cdcc (82,9%), Cdcm (70,1%) e Cdru (83,8%). A celularidade foi alterada depois da inoculaÃÃo de Cdcc, Cdru e CTXru, em todos os tipos de cÃlulas. A contagem global de cÃlulas do peritÃnio aumentou apÃs inoculaÃÃo de Cdcc, Cdcol, Cdru e a CTXru. Em adiÃÃo, o macrÃfago foi à cÃlula predominante na contagem diferencial de cÃlulas peritoniais, contudo, somente a Cdcol apresentou significÃncia estatÃstica para macrÃfago (62,3%). Foi encontrada reduÃÃo significativa do espraiamento celular depois da administraÃÃo de todos os venenos variando de 52,7 a 65,7%. A fagocitose foi estatisticamente reduzida pela Cdcc nos perÃodos de 30, 60, 90 e 120 minutos. Cdru reduziu a fagocitose apenas em 30, 60 e 120 minutos, Cdcm em 30 e 90 minutos e CTXru nos tempos de 60 e 120 minutos. A Cdcol, e a CTXru mostraram significÃncia na atividade fungicida contra C. albicans nos perÃodos de 30, 60, 90 e 120 minutos, mas a Cdcc mostrou resultado similar em 60, 90 e 120 minutos. Conclui-se que o veneno interfere diferentemente na resposta hematolÃgica e funcional. Em adiÃÃo pode-se postular que os macrÃfagos foram responsÃveis por estas alteraÃÃes. Estudos futuros deverÃo ser realizados na perspectiva da identificaÃÃo de provÃvel aÃÃo fungicida de venenos ofÃdicos e suas fraÃÃes / Venomous snake accidents represent a serious public health problem in tropical countries, as much as for their frequency of occurrence and/or morbidity and mortality that they caused. In Brazil, the genus Crotalus comprise only one species, termed Crotalus durissus, which is divided into six subspecies. The aim of our study was to evaluate the effects promoted by venoms of Crotalus durissus cascavella, originated from the States of Cearà (Cdcc) and MaranhÃo (Cdcm); C. durissus collilineatus (Cdcol); C. durissus ruruima (Cdru) and its isolated components, such as crotoxin (CTXru) and phospholipase A2 (PLA2ru), in the biological processes of cellular spreading, phagocytosis, hematological alterations and antifungal activity. Male Swiss mice were inoculated intraperitoneally with the venom doses of 120, 50, 27, 20, 10 and 10 Âg/Kg, respectively to the snakes described above. After two hours of inoculation blood samples and exudate were collected from orbital plex and peritoneum, respectively. Statistical evaluation was performed using Student-T test with significance level set at 95%. We compared the treated animals with a control group, where animals were inoculated with saline 0.9%. Cdcm and CTXru caused the most severe alterations in the erythrogram. We noticed that 37.5% of the erythrocytes showed macrocytic and microcytic morphology; 25.5% were hipocromic; 25% showed anisocytosis and the presence of polycromasia. We also found Howell Jolly bodies in 16.8% of the examined erythocytes. The total counting of leukocytes was reduced statistically after administration of Cdcc (82.9%), Cdcm (70.1%) and Cdru (83.8%). Cellularity was altered after the inoculation of Cdcc, Cdru and CTXru for all evaluated cells. We noticed a statistic increase of peritoneum total cells caused by Cdcc, Cdcol, Cdru and CTXru. In addition, macrophage was the most predominant cell after peritoneum differential cell counting. However, only Cdcol showed a statistic increase of macrophages (62.3%). We found significant reduction of cellular spreading after administration of all venoms ranging from 52.7 to 65.7%. Phagocytosis was statistically reduced by Cdcc in the periods of 30, 60, 90 and 120 minutes. However, Cdru reduced phagocytosis only at 30, 60 and 90 minutes, Cdcm decreased phagocytosis at 30 and 90 minutes and CTXru in the periods of 60 and 120 minutes. Cdcol and CTXru showed significant fungicide activity against C. albicans in the periods of 30, 60, 90 and 120 minutes, but Cdcc showed similar results at 60, 90 and 120 minutes. We conclude that distinct venoms interfered differently in the intensity of each functional and hematological response. In addition, we postulate that macrophages maybe partially responsible for these alterations. Further studies should be evaluated for the use of venoms as fungicides
|
139 |
The role of DLG-MAGUKs in mediating signaling specificity at the postsynaptic densityDuda, Joana-Kristin 18 December 2018 (has links)
No description available.
|
140 |
Forward Chemical Genetics Drug Screen Yields Novel Proteases and Proteolytic Inhibitors of HGF–induced Epithelial–Mesenchymal TransitionSchuler, Jeffrey Thomas 01 March 2016 (has links)
Hepatocyte Growth Factor (HGF)–induced Epithelial–Mesenchymal Transition (EMT) is a complex cellular pathway that causes epithelial cell scattering by breaking cell–cell contacts, eliminating apical–basal polarity, and replacing epithelial markers and characteristics with mesenchymal markers. Early EMT events include a brief period of cell spreading, followed by cell compaction and cell–cell contact breaks. A forward chemical genetics drug screen of 50,000 unique compounds measuring HGF–induced cell scattering identified 26 novel EMT inhibitors, including 2 proteolytic inhibitors. Here, we show that B5500–4, one of the EMT inhibitors from the screen, blocks HGF–induced EMT by a predicted blocking of the protease furin, in addition to secondarily blocking Beta–Secretase (BACE).We also show that MMP–12 and MMP–9 are required for HGF–induced EMT to progress. MMP–12 is required for cell contraction, and its inhibition produces a continuous cell spreading phenotype.We also demonstrate that both furin and BACE activity are required for HGF–induced EMT to proceed, but that they are involved in separate pathways. We show that BACE inhibition leads to a failure of cell spreading in early EMT, and that EphA2 is a member of this pathway. We also demonstrate that it is likely BACE2, and not BACE1 that is responsible for early cell spreading. Furin is also required for HGF–induced cell scattering, but does not play a role in the cell spreading process. These findings highlight the importance of proteolytic activity at the earliest stages of HGF–induced EMT.
|
Page generated in 0.0566 seconds